Multifunctional electroless nickel boron composite coatings incorporated by magnesium diboride ceramic particles

被引:1
作者
Bulbul, Ferhat [1 ]
Kara, Adem [2 ]
机构
[1] Erzurum Tech Univ, Dept Mech Engn, Erzurum, Turkiye
[2] Bayburt Univ, Cent Res Lab, Bayburt, Turkiye
来源
INTERNATIONAL JOURNAL OF CERAMIC ENGINEERING AND SCIENCE | 2024年 / 6卷 / 06期
关键词
composite coating; electroless deposition; MgB2; Ni-B; NI-P; CORROSION-RESISTANCE; SUPERCONDUCTING PROPERTIES; NANOCOMPOSITE COATINGS; DEPOSITION; BEHAVIOR; FILMS; WEAR; MICROSTRUCTURE; NANOPARTICLES;
D O I
10.1002/ces2.10237
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, the role of MgB2 in composite coatings is pivotal. Electroless Ni-B plating, a current-free chemical reduction process, deposits nickel-boron coatings. Other than MgB2, reinforcements like SiC, B4C, and so forth are used with Ni-B coatings for improved properties. The research focuses on Ni-B/MgB2 coatings on AISI 4140 steel using electroless deposition and annealing at different temperatures. Initially, the coating appears dense and amorphous, transforming into worm-like structures through crystallization with MgB2. Higher annealing temperatures lead to brush-like, feathery, and oyster mushroom structures, forming crystalline nickel boron compounds and oxide phases due to synergy. Interestingly, the newly introduced phases disrupt friction patterns nonlinearly, which is linked to MgB2's ceramic nature and reinforcement quantity. Conversely, incorporating MgB2 and annealing-induced intermetallic phases notably enhances hardness (up to 6) and improves hydrophilicity and antibacterial traits in the coating.
引用
收藏
页数:13
相关论文
共 60 条
[1]   WETTING UNDER CHEMICAL-EQUILIBRIUM AND NONEQUILIBRIUM CONDITIONS [J].
AKSAY, IA ;
HOGE, CE ;
PASK, JA .
JOURNAL OF PHYSICAL CHEMISTRY, 1974, 78 (12) :1178-1183
[2]   Electrochemical behavior of low phosphorus electroless Ni-P-Si3N4 composite coatings [J].
Balaraju, J. N. ;
Selvi, V. Ezhil ;
Rajam, K. S. .
MATERIALS CHEMISTRY AND PHYSICS, 2010, 120 (2-3) :546-551
[3]   Influence of particle size on the microstructure, hardness and corrosion resistance of electroless Ni-P-Al2O3 composite coatings [J].
Balaraju, JN ;
Kalavati ;
Rajam, KS .
SURFACE & COATINGS TECHNOLOGY, 2006, 200 (12-13) :3933-3941
[4]   The Effects of Deposition Parameters on Surface Morphology and Crystallographic Orientation of Electroless Ni-B Coatings [J].
Bulbul, Ferhat .
METALS AND MATERIALS INTERNATIONAL, 2011, 17 (01) :67-75
[5]   Review of the superconducting properties of MgB2 [J].
Buzea, C ;
Yamashita, T .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2001, 14 (11) :R115-R146
[6]   A novel electroless plating of Ni-P-TiO2 nano-composite coatings [J].
Chen, Weiwei ;
Gao, Wei ;
He, Yedong .
SURFACE & COATINGS TECHNOLOGY, 2010, 204 (15) :2493-2498
[7]   Preparation and properties of composite electroless Ni-P-ZnO coatings [J].
Chintada V.B. ;
Koona R. .
Materials Research Innovations, 2020, 24 (02) :67-74
[8]  
Cieslak G, 2017, OCHR PRZED KOROZ, V60, P215, DOI 10.15199/40.2017.7.1
[9]   Effect of surfactants on the behavior of the Ni-P bath and on the formation of electroless Ni-P-TiC composite coatings [J].
Czagany, M. ;
Baumli, P. .
SURFACE & COATINGS TECHNOLOGY, 2019, 361 :42-49
[10]   Homogeneous Ni-P/Al2O3 nanocomposite coatings from stable dispersions in electroless nickel baths [J].
de Hazan, Yoram ;
Werner, Dennis ;
Z'graggen, Markus ;
Groteklaes, Michael ;
Graule, Thomas .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2008, 328 (01) :103-109