Corrosion resistance analysis of 316L stainless steel needles used in vaccine packaging

被引:0
|
作者
Souza, Natieli de Oliveira [1 ]
Kunst, Sandra Raquel [1 ]
Soares, Luana Goes [1 ]
Ziulkoski, Ana Luiza [1 ]
Schneider, Eduardo Luis [2 ]
Oliveira, Claudia Trindade [1 ]
机构
[1] Univ Feevale, Novo Hamburgo, RS, Brazil
[2] Univ Fed Rio Grande Do Sul, Programa Posgrad Engn Minas Met & Mat, Porto Alegre, RS, Brazil
来源
MATERIA-RIO DE JANEIRO | 2024年 / 29卷 / 03期
关键词
316L stainless steel; Corrosion; Excipients;
D O I
10.1590/1517-7076-RMAT-2024-0158
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The manufacturing and packaging of vaccines have become essential on the global stage due to the resurgence of the COVID-19 pandemic since 2020. The process of obtaining the vaccine ranges from laboratory studies to its storage in product reservoir tanks. To do so, the vaccine passes through filling pumps and sanitary hoses, until it is effectively filled into vials and ampoules using filling needles. However, they are developed in 316L stainless steel, which when exposed to stagnant or moving liquids can corrode and contaminate the drug. In this context, this work aims to evaluate whether there is chemical contamination of the needles supplied by the company Teksul Solu & ccedil;& otilde;es em Envase. To this end, 21 filling needles were immersed in excipients, with physicochemical properties that are equivalent to the vaccine, for 0, 35, 63 and 94 days. The excipients were evaluated for pH and atomic absorption, while the needles were evaluated by mass loss and gain analysis, microscopic analyzes obtained using SEM (Scanning Electron Microscope) and electrochemical corrosion tests. The results showed that increasing the immersion time of the filling needles favored the formation of a passive layer with corrosion resistance properties.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] CORROSION RESISTANCE OF 316L STAINLESS STEEL IN FUEL CELL ELECTROLYTE
    Chen, T. T.
    Kang, S. M.
    Li, Y. L.
    METALURGIJA, 2019, 58 (1-2): : 99 - 102
  • [2] Corrosion resistance of EPD nanohydroxyapatite coated 316L stainless steel
    Assadian, M.
    Jafari, H.
    Shahri, S. M. Ghaffari
    Idris, M. H.
    Gholampour, B.
    SURFACE ENGINEERING, 2014, 30 (11) : 806 - 813
  • [3] Surface enriched molybdenum enhancing the corrosion resistance of 316L stainless steel
    Lv Jinlong
    Liang Tongxiang
    Wang Chen
    MATERIALS LETTERS, 2016, 171 : 38 - 41
  • [4] Corrosion resistance of chromized 316L stainless steel for PEMFC bipolar plates
    Cho, K. H.
    Lee, W. G.
    Lee, S. B.
    Jang, H.
    JOURNAL OF POWER SOURCES, 2008, 178 (02) : 671 - 676
  • [5] Composition and corrosion resistance of palladium film on 316L stainless steel by brush plating
    Tang Jun-lei
    Zuo Yu
    Tang Yu-ming
    Xiong Jin-ping
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2012, 22 (01) : 97 - 103
  • [6] Corrosion resistance and biocompatibility of cold-sprayed titanium on 316L stainless steel
    Wathanyu, Kessaraporn
    Tuchinda, Karuna
    Daopiset, Siriporn
    Sirivisoot, Sirinrath
    SURFACE & COATINGS TECHNOLOGY, 2022, 445
  • [7] The effect of laser shock processing on corrosion resistance of stainless steel AISI 316L
    Roman, Ionut Bogdan
    Tierean, Mircea Horia
    Baltes, Liana Sanda
    Mirza, Rosca Julia
    ADVANCED MATERIALS AND STRUCTURES V, 2014, 216 : 210 - 215
  • [8] Effect of Strain Hardening on Wear and Corrosion Resistance of 316L Austenitic Stainless Steel
    Huang, Jiaqi
    Sun, Guoqing
    Peng, Jian
    Wu, Wangping
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 33 (16) : 8108 - 8121
  • [9] Corrosion behaviour of 316L stainless steel in PTA slurry
    Ju, P. F.
    Zuo, Y.
    Tang, J. L.
    Tang, Y. M.
    CORROSION ENGINEERING SCIENCE AND TECHNOLOGY, 2013, 48 (03) : 207 - 210
  • [10] Crystallographic effects in corrosion of austenitic stainless steel 316L
    Lindell, D.
    Pettersson, R.
    MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2015, 66 (08): : 727 - 732