TF-EPI: an interpretable enhancer-promoter interaction detection method based on Transformer

被引:1
作者
Liu, Bowen [1 ]
Zhang, Weihang [1 ]
Zeng, Xin [1 ]
Loza, Martin [2 ]
Park, Sung-Joon [2 ]
Nakai, Kenta [1 ,2 ]
机构
[1] Univ Tokyo, Grad Sch Frontier Sci, Dept Computat Biol & Med Sci, Tokyo, Japan
[2] Univ Tokyo, Inst Med Sci, Human Genome Ctr, Tokyo, Japan
关键词
Transformer; enhancer-promoter interactions; motif discovery; attention mechanism; transfer learning; GENOME; MXI1;
D O I
10.3389/fgene.2024.1444459
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The detection of enhancer-promoter interactions (EPIs) is crucial for understanding gene expression regulation, disease mechanisms, and more. In this study, we developed TF-EPI, a deep learning model based on Transformer designed to detect these interactions solely from DNA sequences. The performance of TF-EPI surpassed that of other state-of-the-art methods on multiple benchmark datasets. Importantly, by utilizing the attention mechanism of the Transformer, we identified distinct cell type-specific motifs and sequences in enhancers and promoters, which were validated against databases such as JASPAR and UniBind, highlighting the potential of our method in discovering new biological insights. Moreover, our analysis of the transcription factors (TFs) corresponding to these motifs and short sequence pairs revealed the heterogeneity and commonality of gene regulatory mechanisms and demonstrated the ability to identify TFs relevant to the source information of the cell line. Finally, the introduction of transfer learning can mitigate the challenges posed by cell type-specific gene regulation, yielding enhanced accuracy in cross-cell line EPI detection. Overall, our work unveils important sequence information for the investigation of enhancer-promoter pairs based on the attention mechanism of the Transformer, providing an important milestone in the investigation of cis-regulatory grammar.
引用
收藏
页数:11
相关论文
共 39 条
[1]   Effective gene expression prediction from sequence by integrating long-range interactions [J].
Avsec, Ziga ;
Agarwal, Vikram ;
Visentin, Daniel ;
Ledsam, Joseph R. ;
Grabska-Barwinska, Agnieszka ;
Taylor, Kyle R. ;
Assael, Yannis ;
Jumper, John ;
Kohli, Pushmeet ;
Kelley, David R. .
NATURE METHODS, 2021, 18 (10) :1196-+
[2]   Expression of MXI1, a Myc antagonist, is regulated by Sp1 and AP2 [J].
Benson, LQ ;
Coon, MR ;
Krueger, LM ;
Han, GC ;
Sarnaik, AA ;
Wechsler, DS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (40) :28794-28802
[3]   Chromatin interaction neural network (ChINN): a machine learning-based method for predicting chromatin interactions from DNA sequences [J].
Cao, Fan ;
Zhang, Yu ;
Cai, Yichao ;
Animesh, Sambhavi ;
Zhang, Ying ;
Akincilar, Semih Can ;
Loh, Yan Ping ;
Li, Xinya ;
Chng, Wee Joo ;
Tergaonkar, Vinay ;
Kwoh, Chee Keong ;
Fullwood, Melissa J. .
GENOME BIOLOGY, 2021, 22 (01)
[4]   Capturing large genomic contexts for accurately predicting enhancer-promoter interactions [J].
Chen, Ken ;
Zhao, Huiying ;
Yang, Yuedong .
BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
[5]   Topological domains in mammalian genomes identified by analysis of chromatin interactions [J].
Dixon, Jesse R. ;
Selvaraj, Siddarth ;
Yue, Feng ;
Kim, Audrey ;
Li, Yan ;
Shen, Yin ;
Hu, Ming ;
Liu, Jun S. ;
Ren, Bing .
NATURE, 2012, 485 (7398) :376-380
[6]   SOX2 and SOX21 in Lung Epithelial Differentiation and Repair [J].
Eenjes, Evelien ;
Tibboel, Dick ;
Wijnen, Rene M. H. ;
Schnater, Johannes Marco ;
Rottier, Robbert J. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (21)
[7]   JASPAR 2020: update of the open-access database of transcription factor binding profiles [J].
Fornes, Oriol ;
Castro-Mondragon, Jaime A. ;
Khan, Aziz ;
van der Lee, Robin ;
Zhang, Xi ;
Richmond, Phillip A. ;
Modi, Bhavi P. ;
Correard, Solenne ;
Gheorghe, Marius ;
Baranasic, Damir ;
Santana-Garcia, Walter ;
Tan, Ge ;
Cheneby, Jeanne ;
Ballester, Benoit ;
Parcy, Francois ;
Sandelin, Albin ;
Lenhard, Boris ;
Wasserman, Wyeth W. ;
Mathelier, Anthony .
NUCLEIC ACIDS RESEARCH, 2020, 48 (D1) :D87-D92
[8]   Predicting 3D genome folding from DNA sequence with Akita [J].
Fudenberg, Geoff ;
Kelley, David R. ;
Pollard, Katherine S. .
NATURE METHODS, 2020, 17 (11) :1111-+
[9]   An oestrogen-receptor-α-bound human chromatin interactome [J].
Fullwood, Melissa J. ;
Liu, Mei Hui ;
Pan, You Fu ;
Liu, Jun ;
Xu, Han ;
Bin Mohamed, Yusoff ;
Orlov, Yuriy L. ;
Velkov, Stoyan ;
Ho, Andrea ;
Mei, Poh Huay ;
Chew, Elaine G. Y. ;
Huang, Phillips Yao Hui ;
Welboren, Willem-Jan ;
Han, Yuyuan ;
Ooi, Hong Sain ;
Ariyaratne, Pramila N. ;
Vega, Vinsensius B. ;
Luo, Yanquan ;
Tan, Peck Yean ;
Choy, Pei Ye ;
Wansa, K. D. Senali Abayratna ;
Zhao, Bing ;
Lim, Kar Sian ;
Leow, Shi Chi ;
Yow, Jit Sin ;
Joseph, Roy ;
Li, Haixia ;
Desai, Kartiki V. ;
Thomsen, Jane S. ;
Lee, Yew Kok ;
Karuturi, R. Krishna Murthy ;
Herve, Thoreau ;
Bourque, Guillaume ;
Stunnenberg, Hendrik G. ;
Ruan, Xiaoan ;
Cacheux-Rataboul, Valere ;
Sung, Wing-Kin ;
Liu, Edison T. ;
Wei, Chia-Lin ;
Cheung, Edwin ;
Ruan, Yijun .
NATURE, 2009, 462 (7269) :58-64
[10]   Developmental enhancers and chromosome topology [J].
Furlong, Eileen E. M. ;
Levine, Michael .
SCIENCE, 2018, 361 (6409) :1341-1345