A note on conjugacy of supplements in soluble periodic linear groups

被引:0
作者
Trombetti, Marco [1 ]
机构
[1] Complesso Univ Monte S Angelo, Univ Napoli Federico 2, Dipartimento Matemat & Applicazioni Renato Cacciop, Via Cintia, Naples, Italy
关键词
Linear group; conjugate subgroups; supplement; NORMAL-SUBGROUPS; FINITE; COMPLEMENTS;
D O I
10.1515/forum-2024-0102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this short note is to prove that if G is a (homomorphic images of a) soluble periodic linear group and N is a locally nilpotent normal subgroup of G such that N and G / N {G/N} have no isomorphic G-chief factors, then two supplements to N in G are conjugate provided that they have the same intersection with N. This result follows from well-known theorems in the theory of Schunck classes (see [A. Ballester-Bolinches and L. M. Ezquerro, On conjugacy of supplements of normal subgroups of finite groups, Bull. Aust. Math. Soc. 89 2014, 2, 293-299]), and it appeared as the main theorem of [C. Parker and P. Rowley, A note on conjugacy of supplements in finite soluble groups, Bull. Lond. Math. Soc. 42 2010, 3, 417-419].
引用
收藏
页码:1217 / 1219
页数:3
相关论文
共 10 条
[1]  
ASAR AO, 1973, J LOND MATH SOC, V6, P358
[2]   On complements of F-residuals of finite groups [J].
Ballester-Bolinches, A. ;
Kamornikov, S. F. ;
Perez-Calabuig, V. .
COMMUNICATIONS IN ALGEBRA, 2017, 45 (02) :878-882
[3]   ON CONJUGACY OF SUPPLEMENTS OF NORMAL SUBGROUPS OF FINITE GROUPS [J].
Ballester-Bolinches, A. ;
Ezquerro, Luis M. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (02) :293-299
[4]  
Curzio M., 1979, SOME PROBLEMS SYLOW
[5]  
DIXON JD, 1967, P LOND MATH SOC, V17, P431
[6]  
DIXON JD, 1968, P LOND MATH SOC, V18, P768
[7]  
Dixon M.R., 1994, SYLOW THEORY FORMATI
[8]   A note on conjugacy of supplements in finite soluble groups [J].
Parker, Christopher ;
Rowley, Peter .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2010, 42 :417-419
[9]  
Robinson DJS., 1972, Finiteness Conditions and Generalized Soluble Groups
[10]  
Wehrfritz B. A. F., 1973, INFINITE LINEAR GROU