Real-time data visual monitoring of triboelectric nanogenerators enabled by Deep learning

被引:7
|
作者
Zhang, Huiya [1 ]
Liu, Tao [1 ]
Zou, Xuelian [1 ]
Zhu, Yunpeng [1 ]
Chi, Mingchao [1 ]
Wu, Di [1 ]
Jiang, Keyang [1 ]
Zhu, Sijia [1 ]
Zhai, Wenxia [1 ]
Wang, Shuangfei [1 ]
Nie, Shuangxi [1 ]
Wang, Zhiwei [1 ]
机构
[1] Guangxi Univ, Coll Light Ind & Food Engn, Key Lab Clean Pulp & Papermaking & Pollut Control, Nanning 530004, Peoples R China
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerator; Deep learning; Self-powered sensing; Real-time monitoring; DATA-ACQUISITION; DECISION-MAKING; RECOGNITION; NETWORKS; SYSTEM; SENSOR; PERFORMANCE; INTERNET; MODEL;
D O I
10.1016/j.nanoen.2024.110186
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The rapid advancement of smart sensors and logic algorithms has propelled the widespread adoption of the Internet of Things (IoT) and expedited the advent of the intelligent era. The integration of triboelectric nanogenerator (TENG) sensors with Deep learning (DL) leverages unique advantages of TENG such as self-powered sensing, high sensitivity, and broad applicability, along with DL's robust data processing capabilities to effectively, efficiently, and visually monitor various relevant signals. This amalgamation exhibits significantly superior sensing performance and immense developmental potential, finding extensive utility in domains like smart homes, healthcare system, environmental monitoring, among others. Currently, the synergistic working principle of integrating these two technologies remains insufficiently elucidated. This review presents a comprehensive overview of cutting-edge DL techniques and related research aimed at enhancing real-time visual monitoring of TENG. Specifically, it focuses on DL algorithms such as Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Long Short-Term Memory (LSTM) for processing intricate TENG-generated datasets. Furthermore, this review outlines the advantages and synergistic mechanisms resulting from the integration of DL with TENG sensors, providing a comprehensive summary of their latest applications in various fields requiring real-time data visual monitoring. Finally, it analyzes the prospects, challenges, and countermeasures associated with the integrated development of TENG and DL while offering a comprehensive theoretical foundation and practical guidance for future advancements in this field.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] A method for predicting hobbing tool wear based on CNC real-time monitoring data and deep learning
    Wang, Dashuang
    Hong, Rongjing
    Lin, Xiaochuan
    PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2021, 72 : 847 - 857
  • [32] Edge Computing-Enabled Deep Learning for Real-time Video Optimization in IIoT
    Dou, Wanchun
    Zhao, Xuan
    Yin, Xiaochun
    Wang, Huihui
    Luo, Yun
    Qi, Lianyong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (04) : 2842 - 2851
  • [33] A Conceptual Deep Learning Model for Real-Time Routing
    Ikidid, Abdelouafi
    El Fazziki, Abdelaziz
    Sadgal, Mohammed
    El Ghazouani, Mohamed
    Ichahane, My Youssef
    2022 16TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS, SITIS, 2022, : 453 - 456
  • [34] Deep learning for real-time image steganalysis: a survey
    Ruan, Feng
    Zhang, Xing
    Zhu, Dawei
    Xu, Zhanyang
    Wan, Shaohua
    Qi, Lianyong
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2020, 17 (01) : 149 - 160
  • [35] Real-Time Traffic Classification through Deep Learning
    Priymak, Maxim
    Sinnott, Richard O.
    8TH IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES, BDCAT 2021, 2021, : 128 - 133
  • [36] A real-time monitoring approach for bivariate event data
    Zwetsloot, Inez Maria
    Mahmood, Tahir
    Taiwo, Funmilola Mary
    Wang, Zezhong
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2023, 39 (06) : 789 - 817
  • [37] SafeSmartDrive: Real-Time Traffic Environment Detection and Driver Behavior Monitoring With Machine and Deep Learning
    Bouhsissin, Soukaina
    Sael, Nawal
    Benabbou, Faouzia
    Soultana, Abdelfettah
    Jannani, Ayoub
    IEEE ACCESS, 2024, 12 : 169499 - 169517
  • [38] Real-Time Health Data Acquisition and Geospatial Monitoring: A Visual Analytics Approach
    Latif, Shahid
    Varaich, Zaeem Ahmad
    Ali, Muhammad Asif
    Khan, Muhammad Amin
    Ayyaz, Muhammad Naeem
    2015 INTERNATIONAL CONFERENCE ON OPEN SOURCE SYSTEMS & TECHNOLOGIES (ICOSST), 2015, : 146 - 150
  • [39] A survey of real-time surface defect inspection methods based on deep learning
    Liu, Yi
    Zhang, Changsheng
    Dong, Xingjun
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (10) : 12131 - 12170
  • [40] Deep Learning-Based Real-Time Crack Segmentation for Pavement Images
    Wang, Wenjun
    Su, Chao
    KSCE JOURNAL OF CIVIL ENGINEERING, 2021, 25 (12) : 4495 - 4506