Improving the precision of forces in real-space pseudopotential density functional theory

被引:0
作者
Roller, Deena [1 ]
Rappe, Andrew M. [2 ]
Kronik, Leeor [1 ]
Hellman, Olle [1 ]
机构
[1] Weizmann Inst Sci, Dept Mol Chem & Mat Sci, IL-76100 Rehovot, Israel
[2] Univ Penn, Dept Chem, Philadelphia, PA 10104 USA
基金
瑞典研究理事会;
关键词
ELECTRONIC-STRUCTURE CALCULATIONS;
D O I
10.1063/5.0218715
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The high-order finite difference real-space pseudopotential density functional theory (DFT) approach is a valuable method for large-scale, massively parallel DFT calculations. A significant challenge in the approach is the oscillating "egg-box" error introduced by aliasing associated with a coarse grid spacing. To address this issue while minimizing computational cost, we developed a finite difference interpolation (FDI) scheme [Roller et al., J. Chem. Theory Comput. 19, 3889 (2023)] as a means of exploiting the high resolution of the pseudopotential to reduce egg-box effects systematically. Here, we show an implementation of this method in the PARSEC code and examine the practical utility of the combination of FDI with additional methods for improving force precision and/or reducing its computational cost, including orbital-based forces, compensating charges (namely, adding and subtracting a judiciously chosen charge density such that the total density is unaltered), and a modified spatial domain in which the real-space grid is defined. Using selected small molecules, as well as metallic Li, as test cases, we show that a combination of all four aspects leads to a significant reduction in computational cost while retaining a high level of precision that supports accurate structures and vibrational spectra, as well as stable and accurate molecular dynamics runs.
引用
收藏
页数:13
相关论文
共 52 条
  • [11] FINITE-DIFFERENCE-PSEUDOPOTENTIAL METHOD - ELECTRONIC-STRUCTURE CALCULATIONS WITHOUT A BASIS
    CHELIKOWSKY, JR
    TROULLIER, N
    SAAD, Y
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (08) : 1240 - 1243
  • [12] HIGHER-ORDER FINITE-DIFFERENCE PSEUDOPOTENTIAL METHOD - AN APPLICATION TO DIATOMIC-MOLECULES
    CHELIKOWSKY, JR
    TROULLIER, N
    WU, K
    SAAD, Y
    [J]. PHYSICAL REVIEW B, 1994, 50 (16) : 11355 - 11364
  • [13] Molecular dynamics with quantum forces: Vibrational spectra of localized systems
    Chelikowsky, JR
    Jing, XD
    Wu, K
    Saad, Y
    [J]. PHYSICAL REVIEW B, 1996, 53 (18): : 12071 - 12079
  • [14] DFT-FE 1.0: A massively parallel hybrid CPU-GPU density functional theory code using finite-element discretization
    Das, Sambit
    Motamarri, Phani
    Subramanian, Vishal
    Rogers, David M.
    Gavini, Vikram
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2022, 280
  • [15] Solving the electronic structure problem for over 100 000 atoms in real space
    Dogan, Mehmet
    Liou, Kai-Hsin
    Chelikowsky, James R.
    [J]. PHYSICAL REVIEW MATERIALS, 2023, 7 (06)
  • [16] Real-space solution to the electronic structure problem for nearly a million electrons
    Dogan, Mehmet
    Liou, Kai-Hsin
    Chelikowsky, James R.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (24)
  • [17] Engel E, 2011, THEOR MATH PHYS SER, P1, DOI 10.1007/978-3-642-14090-7
  • [18] Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method
    Enkovaara, J.
    Rostgaard, C.
    Mortensen, J. J.
    Chen, J.
    Dulak, M.
    Ferrighi, L.
    Gavnholt, J.
    Glinsvad, C.
    Haikola, V.
    Hansen, H. A.
    Kristoffersen, H. H.
    Kuisma, M.
    Larsen, A. H.
    Lehtovaara, L.
    Ljungberg, M.
    Lopez-Acevedo, O.
    Moses, P. G.
    Ojanen, J.
    Olsen, T.
    Petzold, V.
    Romero, N. A.
    Stausholm-Moller, J.
    Strange, M.
    Tritsaris, G. A.
    Vanin, M.
    Walter, M.
    Hammer, B.
    Hakkinen, H.
    Madsen, G. K. H.
    Nieminen, R. M.
    Norskov, J. K.
    Puska, M.
    Rantala, T. T.
    Schiotz, J.
    Thygesen, K. S.
    Jacobsen, K. W.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (25)
  • [19] Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package
    Epifanovsky, Evgeny
    Gilbert, Andrew T. B.
    Feng, Xintian
    Lee, Joonho
    Mao, Yuezhi
    Mardirossian, Narbe
    Pokhilko, Pavel
    White, Alec F.
    Coons, Marc P.
    Dempwolff, Adrian L.
    Gan, Zhengting
    Hait, Diptarka
    Horn, Paul R.
    Jacobson, Leif D.
    Kaliman, Ilya
    Kussmann, Jorg
    Lange, Adrian W.
    Lao, Ka Un
    Levine, Daniel S.
    Liu, Jie
    McKenzie, Simon C.
    Morrison, Adrian F.
    Nanda, Kaushik D.
    Plasser, Felix
    Rehn, Dirk R.
    Vidal, Marta L.
    You, Zhi-Qiang
    Zhu, Ying
    Alam, Bushra
    Albrecht, Benjamin J.
    Aldossary, Abdulrahman
    Alguire, Ethan
    Andersen, Josefine H.
    Athavale, Vishikh
    Barton, Dennis
    Begam, Khadiza
    Behn, Andrew
    Bellonzi, Nicole
    Bernard, Yves A.
    Berquist, Eric J.
    Burton, Hugh G. A.
    Carreras, Abel
    Carter-Fenk, Kevin
    Chakraborty, Romit
    Chien, Alan D.
    Closser, Kristina D.
    Cofer-Shabica, Vale
    Dasgupta, Saswata
    de Wergifosse, Marc
    Deng, Jia
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (08)
  • [20] Forces in molecules
    Feynman, RP
    [J]. PHYSICAL REVIEW, 1939, 56 (04): : 340 - 343