Electroreduction of CO2 to methane with triazole molecular catalysts

被引:17
作者
Xu, Zhanyou [1 ]
Lu, Ruihu [2 ]
Lin, Zih-Yi [3 ,4 ]
Wu, Weixing [1 ]
Tsai, Hsin-Jung [3 ,4 ]
Lu, Qian [1 ]
Li, Yuguang C. [5 ]
Hung, Sung-Fu [3 ,4 ]
Song, Chunshan [1 ]
Yu, Jimmy C. [1 ]
Wang, Ziyun [2 ]
Wang, Ying [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Chem, Hong Kong, Peoples R China
[2] Univ Auckland, Sch Chem Sci, Auckland, New Zealand
[3] Natl Yang Ming Chiao Tung Univ, Dept Appl Chem, Hsinchu, Taiwan
[4] Natl Yang Ming Chiao Tung Univ, Ctr Emergent Funct Matter Sci, Hsinchu, Taiwan
[5] SUNY Buffalo, Dept Chem, Buffalo, NY USA
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; COPPER; ELECTRODE; CONVERSION; PRODUCTS; SURFACES;
D O I
10.1038/s41560-024-01645-0
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The electrochemical CO2 reduction reaction towards value-added fuel and feedstocks often relies on metal-based catalysts. Organic molecular catalysts, which are more acutely tunable than metal catalysts, are still unable to catalyse CO2 to hydrocarbons under industrially relevant current densities for long-term operation, and the catalytic mechanism is still elusive. Here we report 3,5-diamino-1,2,4-triazole-based membrane electrode assemblies for CO2-to-CH4 conversion with Faradaic efficiency of (52 +/- 4)% and turnover frequency of 23,060 h(-1) at 250 mA cm(-2). Our mechanistic studies suggest that the CO2 reduction at the 3,5-diamino-1,2,4-triazole electrode proceeds through the intermediary *CO2-*COOH-*C(OH)(2)-*COH to produce CH4 due to the spatially distributed active sites and the suitable energy level of the molecular orbitals. A pilot system operated under a total current of 10 A (current density = 123 mA cm(-2)) for 10 h is able to produce CH4 at a rate of 23.0 mmol h(-1).
引用
收藏
页码:1397 / 1406
页数:10
相关论文
共 62 条
[51]   A summary of the reactions of aldehydes with amines [J].
Sprung, MM .
CHEMICAL REVIEWS, 1940, 26 (03) :297-338
[52]   Coupling electrochemical CO2 conversion with CO2 capture [J].
Sullivan, Ian ;
Goryachev, Andrey ;
Digdaya, Ibadillah A. ;
Li, Xueqian ;
Atwater, Harry A. ;
Vermaas, David A. ;
Xiang, Chengxiang .
NATURE CATALYSIS, 2021, 4 (11) :952-958
[53]   Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts [J].
Sun, Libo ;
Reddu, Vikas ;
Fisher, Adrian C. ;
Wang, Xin .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (02) :374-403
[54]   Electrocatalytic CO2 Reduction by Imidazolium-Functionalized Molecular Catalysts [J].
Sung, Siyoung ;
Kumar, Davinder ;
Gil-Sepulcre, Marcos ;
Nippe, Michael .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (40) :13993-13996
[55]   Molecular Catalysts Boost the Rate of Electrolytic CO2 Reduction [J].
Torbensen, Kristian ;
Joulie, Dorian ;
Ren, Shaoxuan ;
Wang, Min ;
Salvatore, Danielle ;
Berlinguette, Curtis P. ;
Robert, Marc .
ACS ENERGY LETTERS, 2020, 5 (05) :1512-1518
[56]   Nitrogen-Based Catalysts for the Electrochemical Reduction of CO2 to CO [J].
Tornow, Claire E. ;
Thorson, Michael R. ;
Ma, Sichao ;
Gewirth, Andrew A. ;
Kenis, Paul J. A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (48) :19520-19523
[57]   Heterogeneous Molecular Catalysts of Metal Phthalocyanines for Electrochemical CO2 Reduction Reactions [J].
Wu, Yueshen ;
Liang, Yongye ;
Wang, Hailiang .
ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (16) :3149-3159
[58]   CO2 Reduction Catalyzed by Mercaptopteridine on Glassy Carbon [J].
Xiang, Dongmei ;
Magana, Donny ;
Dyer, R. Brian .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (40) :14007-14010
[59]   Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2 [J].
Xiao, Hai ;
Goddard, William A., III ;
Cheng, Tao ;
Liu, Yuanyue .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (26) :6685-6688
[60]   Mechanistic Explanation of the pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical Reduction of CO on Cu (111) [J].
Xiao, Hai ;
Cheng, Tao ;
Goddard, William A., III ;
Sundararaman, Ravishankar .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (02) :483-486