Electroreduction of CO2 to methane with triazole molecular catalysts

被引:6
作者
Xu, Zhanyou [1 ]
Lu, Ruihu [2 ]
Lin, Zih-Yi [3 ,4 ]
Wu, Weixing [1 ]
Tsai, Hsin-Jung [3 ,4 ]
Lu, Qian [1 ]
Li, Yuguang C. [5 ]
Hung, Sung-Fu [3 ,4 ]
Song, Chunshan [1 ]
Yu, Jimmy C. [1 ]
Wang, Ziyun [2 ]
Wang, Ying [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Chem, Hong Kong, Peoples R China
[2] Univ Auckland, Sch Chem Sci, Auckland, New Zealand
[3] Natl Yang Ming Chiao Tung Univ, Dept Appl Chem, Hsinchu, Taiwan
[4] Natl Yang Ming Chiao Tung Univ, Ctr Emergent Funct Matter Sci, Hsinchu, Taiwan
[5] SUNY Buffalo, Dept Chem, Buffalo, NY USA
来源
NATURE ENERGY | 2024年 / 9卷 / 11期
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; COPPER; ELECTRODE; CONVERSION; PRODUCTS; SURFACES;
D O I
10.1038/s41560-024-01645-0
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The electrochemical CO2 reduction reaction towards value-added fuel and feedstocks often relies on metal-based catalysts. Organic molecular catalysts, which are more acutely tunable than metal catalysts, are still unable to catalyse CO2 to hydrocarbons under industrially relevant current densities for long-term operation, and the catalytic mechanism is still elusive. Here we report 3,5-diamino-1,2,4-triazole-based membrane electrode assemblies for CO2-to-CH4 conversion with Faradaic efficiency of (52 +/- 4)% and turnover frequency of 23,060 h(-1) at 250 mA cm(-2). Our mechanistic studies suggest that the CO2 reduction at the 3,5-diamino-1,2,4-triazole electrode proceeds through the intermediary *CO2-*COOH-*C(OH)(2)-*COH to produce CH4 due to the spatially distributed active sites and the suitable energy level of the molecular orbitals. A pilot system operated under a total current of 10 A (current density = 123 mA cm(-2)) for 10 h is able to produce CH4 at a rate of 23.0 mmol h(-1).
引用
收藏
页码:1397 / 1406
页数:10
相关论文
共 62 条
  • [1] CO oxidation on Pt(111): An ab initio density functional theory study
    Alavi, A
    Hu, PJ
    Deutsch, T
    Silvestrelli, PL
    Hutter, J
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (16) : 3650 - 3653
  • [2] Electrocatalytic conversion of CO2 on a polypyrrole electrode under high pressure in methanol
    Aydin, R
    Köleli, F
    [J]. SYNTHETIC METALS, 2004, 144 (01) : 75 - 80
  • [3] Electrochemical CO2 Reduction: A Classification Problem
    Bagger, Alexander
    Ju, Wen
    Sofia Varela, Ana
    Strasser, Peter
    Rossmeisl, Jan
    [J]. CHEMPHYSCHEM, 2017, 18 (22) : 3266 - 3273
  • [4] Insight into why the Langmuir-Hinshelwood mechanism is generally preferred
    Baxter, RJ
    Hu, P
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (11) : 4379 - 4381
  • [5] Copper, my precious!
    Buonsanti, Raffaella
    [J]. NATURE CATALYSIS, 2021, 4 (09) : 736 - 737
  • [6] Improving H2S removal in the coke oven gas purification process
    Carneiro, Lucas de Oliveira
    de Vasconcelos, Suenia Fernandes
    de Farias Neto, Gilvan Wanderley
    Brito, Romildo Pereira
    Brito, Karoline Dantas
    [J]. SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 257
  • [7] Using a One-Electron Shuttle for the Multielectron Reduction of CO2 to Methanol: Kinetic, Mechanistic, and Structural Insights
    Cole, Emily Barton
    Lakkaraju, Prasad S.
    Rampulla, David M.
    Morris, Amanda J.
    Abelev, Esta
    Bocarsly, Andrew B.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (33) : 11539 - 11551
  • [8] Catalysis of CO2 Electrochemical Reduction by Protonated Pyridine and Similar Molecules. Useful Lessons from a Methodological Misadventure
    Costentin, Cyrille
    Sayeant, Jean-Michel
    Tard, Cedric
    [J]. ACS ENERGY LETTERS, 2018, 3 (03): : 695 - 703
  • [9] Continuous Carbon Dioxide Electroreduction to Concentrated Multi-carbon Products Using a Membrane Electrode Assembly
    Gabardo, Christine M.
    O'Brien, Colin P.
    Edwards, Jonathan P.
    McCallum, Christopher
    Xu, Yi
    Dinh, Cao-Thang
    Li, Jun
    Sargent, Edward H.
    Sinton, David
    [J]. JOULE, 2019, 3 (11) : 2777 - 2791
  • [10] Mechanism of CO2 Reduction at Copper Surfaces: Pathways to C2 Products
    Garza, Alejandro J.
    Bell, Alexis T.
    Head-Gordon, Martin
    [J]. ACS CATALYSIS, 2018, 8 (02): : 1490 - 1499