Bayesian time-lapse full waveform inversion using Hamiltonian Monte Carlo

被引:2
作者
de Lima, P. D. S. [1 ,2 ]
Ferreira, M. S. [2 ,3 ,4 ]
Corso, G. [5 ]
de Araujo, J. M. [1 ]
机构
[1] Univ Fed Rio Grande do Norte, Dept Fis Teor & Expt, BR-59078970 Natal, RN, Brazil
[2] Trinity Coll Dublin, Sch Phys, Dublin, Ireland
[3] Trinity Coll Dublin, Ctr Res Adapt Nanostruct & Nanodevices CRANN, Dublin, Ireland
[4] Trinity Coll Dublin, Adv Mat & Bioengn Res AMBER Ctr, Dublin, Ireland
[5] Univ Fed Rio Grande do Norte, Dept Biofis & Farmacol, Natal, RN, Brazil
关键词
acoustics; full waveform; inverse problem; time lapse; SEISMIC INVERSION; PRIOR MODEL;
D O I
10.1111/1365-2478.13604
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Time-lapse images carry out important information about dynamic changes in Earth's interior, which can be inferred using different full waveform inversion schemes. The estimation process is performed by manipulating more than one seismic dataset, associated with the baseline and monitors surveys. The time-lapse variations can be so minute and localized that quantifying the uncertainties becomes fundamental to assessing the reliability of the results. The Bayesian formulation of the full waveform inversion problem naturally provides confidence levels in the solution, but evaluating the uncertainty of time-lapse seismic inversion remains a challenge due to the ill-posedness and high dimensionality of the problem. The Hamiltonian Monte Carlo can effectively sample over high-dimensional distributions with affordable computational efforts. In this context, we explore the sequential approach in a Bayesian fashion for time-lapse full waveform inversion using the Hamiltonian Monte Carlo method. The idea relies on integrating the baseline survey information as prior knowledge to the monitor estimation. We compare this methodology with a parallel scheme in perfect and a simple perturbed acquisition geometry scenario considering the Marmousi and a typical Brazilian pre-salt velocity model. We also investigate the correlation effect between baseline and monitor samples on the propagated uncertainties. The results show that samples between different surveys are weakly correlated in the sequential case, while the parallel strategy provides time-lapse images with lower dispersion. Our findings demonstrate that both methodologies are robust in providing uncertainties even in non-repeatable scenarios.
引用
收藏
页码:3381 / 3398
页数:18
相关论文
共 77 条
[21]   Autotuning Hamiltonian Monte Carlo for efficient generalized nullspace exploration [J].
Fichtner, Andreas ;
Zunino, Andrea ;
Gebraad, Lars ;
Boehm, Christian .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 227 (02) :941-968
[22]   Hamiltonian Monte Carlo solution of tomographic inverse problems [J].
Fichtner, Andreas ;
Zunino, Andrea ;
Gebraad, Lars .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 216 (02) :1344-1363
[23]   Hamiltonian Monte Carlo Inversion of Seismic Sources in Complex Media [J].
Fichtner, Andreas ;
Simute, Saule .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2018, 123 (04) :2984-2999
[24]   Bayesian Elastic Full-Waveform Inversion Using Hamiltonian Monte Carlo [J].
Gebraad, Lars ;
Boehm, Christian ;
Fichtner, Andreas .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2020, 125 (03)
[25]   Ensemble-based seismic inversion for a stratified medium [J].
Gineste, Michael ;
Eidsvik, Jo ;
Zheng, York .
GEOPHYSICS, 2020, 85 (01) :R29-R39
[26]  
Hochwart B., 2024, BRAZILIAN J GEOPHYS, V42, P1, DOI [10.22564/brjg.v41i2.2308, DOI 10.22564/BRJG.V41I2.2308]
[27]  
Huang XG, 2023, GEOPHYSICS, V88, pT289, DOI [10.1190/GEO2022-0604.1, 10.1190/geo2022-0604.1]
[28]  
Huang XG, 2020, GEOPHYSICS, V85, pC125, DOI [10.1190/geo2019-0644.1, 10.1190/GEO2019-0644.1]
[29]   Bayesian seismic inversion: a fast sampling Langevin dynamics Markov chain Monte Carlo method [J].
Izzatullah, Muhammad ;
van Leeuwen, Tristan ;
Peter, Daniel .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 227 (03) :1523-1553
[30]   Full waveform inversion of repeating seismic events to estimate time-lapse velocity changes [J].
Kamei, R. ;
Lumley, D. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2017, 209 (02) :1239-1264