Associative and Jordan Lie Nilpotent Algebras

被引:0
作者
Pchelintsev, S. V. [1 ,2 ,3 ]
机构
[1] St Petersburg State Univ, St Petersburg, Russia
[2] Finance Acad Govt Russian Federat, Moscow, Russia
[3] Moscow City Teachers Training Univ, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
associative algebra; Jordan algebra; Lie nilpotent algebra; product theorem for Jordan algebras; IDEALS;
D O I
10.1007/s10469-024-09755-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We look at the interconnection between Lie nilpotent Jordan algebras and Lie nilpotent associative algebras. It is proved that a special Jordan algebra is Lie nilpotent if and only if its associative enveloping algebra is Lie nilpotent. Also it turns out that a Jordan algebra is Lie nilpotent of index 2n + 1 if and only if its algebra of multiplications is Lie nilpotent of index 2n. Finally, we prove a product theorem for Jordan algebras.
引用
收藏
页码:413 / 429
页数:17
相关论文
共 16 条
[1]   Lower central series of free algebras in symmetric tensor categories [J].
Bapat, Asilata ;
Jordan, David .
JOURNAL OF ALGEBRA, 2013, 373 :299-311
[2]  
Dangovski R. R., MAXIMAL CONTAINMENTS
[3]   Some products of commutators in an associative ring [J].
Deryabina, Galina ;
Krasilnikov, Alexei .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (02) :333-341
[4]  
Grishin A. V., 1990, IZV AKAD NAUK SSSR M, V54, P899
[5]  
[Гришин Александр Владимирович Grishin Aleksander Vladimirovich], 2015, [Математический сборник, Sbornik: Mathematics, Matematicheskii sbornik], V206, P113, DOI 10.4213/sm8474
[6]   ON THE LIE IDEALS OF A RING [J].
GUPTA, N ;
LEVIN, F .
JOURNAL OF ALGEBRA, 1983, 81 (01) :225-231
[7]  
Jacobson N., 1968, Colloq. Publ., V39
[8]   ON RINGS WHOSE ASSOCIATED LIE RINGS ARE NILPOTENT [J].
JENNINGS, SA .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (06) :593-597
[9]  
Latyshev V.N., 1965, SIBIRSK MAT Z, V6, P1432
[10]   Product Theorems for Alternative Algebras and Some of Their Applications [J].
Pchelintsev, S. V. .
SIBERIAN MATHEMATICAL JOURNAL, 2023, 64 (02) :374-392