Automated Pavement Distress Detection Based on Convolutional Neural Network

被引:0
|
作者
Zhang, Jinhe [1 ,2 ]
Sun, Shangyu [1 ,2 ,3 ]
Song, Weidong [1 ,2 ]
Li, Yuxuan [1 ,2 ]
Teng, Qiaoshuang [1 ,2 ]
机构
[1] Liaoning Tech Univ, Sch Geomat, Fuxin 123000, Peoples R China
[2] Liaoning Tech Univ, Collaborat Innovat Inst Geospatial Informat Serv, Fuxin 123000, Peoples R China
[3] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430079, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Data mining; Accuracy; Roads; Decoding; Adaptation models; Convolutional neural networks; Surface cracks; Defect detection; Pavement distress detection; convolutional neural network; multiscale feature fusion; attention mechanisms; pavement distress baseline dataset; CRACK DETECTION;
D O I
10.1109/ACCESS.2024.3434569
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pavement distress detection is crucial in road health assessment and monitoring. However, there are still some challenges in extracting pavement distress based on deep learning: such as insufficient segmentation, extraction errors and discontinuities. In this paper, we propose DARNet, a network for pavement distress extraction. A Distress Aware Attention Module (DAAM) is proposed to solve the problem of discontinuity in distress extraction due to inaccurate recovery of distress pixels during upsampling. Based on the characteristics of distress morphology, a Refinement Extraction Module (REM) is designed to effectively capture horizontal and vertical pavement damage features by fusing high-level and low-level features, which improves the accuracy of the model in extracting details of pavement damage information. Finally, a Weighted Cross-Entropy Loss function (WCEL) is introduced to assign weights according to the distance of the pixel point to the boundary of the distress, which solves the problem that the traditional cross entropy function treats each pixel point equally. We also propose a set of pavement distress datasets LNTU_RDD_GS, and the experimental results show that DARNet can reach 82.68% mIoU and 90.13% F score in the datasets in this paper, 80.63% mIoU and 88.35% F score in the four public datasets.
引用
收藏
页码:105055 / 105068
页数:14
相关论文
共 50 条
  • [41] Comparison of deep convolutional neural network classifiers and the effect of scale encoding for automated pavement assessment
    Eslami, Elham
    Yun, Hae-Bum
    JOURNAL OF TRAFFIC AND TRANSPORTATION ENGINEERING-ENGLISH EDITION, 2023, 10 (02) : 258 - 275
  • [42] CL-PSDD: Contrastive Learning for Adaptive Generalized Pavement Surface Distress Detection
    Dong, Ruchan
    Xia, Jinwei
    Zhao, Jin
    Hong, Lei
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025,
  • [43] Automated pixel-level pavement marking detection based on a convolutional transformer
    Zhang, Hang
    He, Anzheng
    Dong, Zishuo
    Zhang, Allen A.
    Liu, Yang
    Zhan, You
    Wang, Kelvin C. P.
    Lin, Zhihao
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [44] Automated Detection of Autism Spectrum Disorder Using a Convolutional Neural Network
    Sherkatghanad, Zeinab
    Akhondzadeh, Mohammadsadegh
    Salari, Soorena
    Zomorodi-Moghadam, Mariam
    Abdar, Moloud
    Acharya, U. Rajendra
    Khosrowabadi, Reza
    Solari, Vahid
    FRONTIERS IN NEUROSCIENCE, 2020, 13
  • [45] Automated Rest EEG-Based Diagnosis of Depression and Schizophrenia Using a Deep Convolutional Neural Network
    Wang, Zhiming
    Feng, Jingwen
    Jiang, Rui
    Shi, Yujie
    Li, Xiaojing
    Xue, Rui
    Du, Xiangdong
    Ji, Mengqi
    Zhong, Fan
    Meng, Yajing
    Dong, Jingjing
    Zhang, Junpeng
    Deng, Wei
    IEEE ACCESS, 2022, 10 : 104472 - 104485
  • [46] Deep Convolutional Neural Network-Based Automated Lesion Detection in Wireless Capsule Endoscopy
    Jeon, Yejin
    Cho, Eunbyul
    Moon, Sehwa
    Chae, Seung-Hoon
    Jo, Hae Young
    Kim, Tae Oh
    Moon, Chang Mo
    Choi, Jang-Hwan
    INTERNATIONAL FORUM ON MEDICAL IMAGING IN ASIA 2019, 2019, 11050
  • [47] Automated Diabetic Retinopathy Detection Based on Binocular Siamese-Like Convolutional Neural Network
    Zeng, Xianglong
    Chen, Haiquan
    Luo, Yuan
    Ye, Wenbin
    IEEE ACCESS, 2019, 7 : 30744 - 30753
  • [48] Automated Arrhythmia Detection using Hilbert-Huang Transform based Convolutional Neural Network
    Lin, Tzu-Chia
    Zhang, Jie
    Sun, Min-Te
    50TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING WORKSHOP PROCEEDINGS - ICPP WORKSHOPS '21, 2021,
  • [49] Automated real-time pavement distress detection using fuzzy logic and neural networks
    Cheng, HD
    NONDESTRUCTIVE EVALUATION OF BRIDGES AND HIGHWAYS, 1996, 2946 : 140 - 151
  • [50] A Network Intrusion Detection Model Based on Convolutional Neural Network
    Tao, Wenwei
    Zhang, Wenzhe
    Hu, Chao
    Hu, Chaohui
    SECURITY WITH INTELLIGENT COMPUTING AND BIG-DATA SERVICES, 2020, 895 : 771 - 783