Cauchy Problem for Stochastic Nonlinear Schrödinger Equation with Nonlinear Energy-Critical Damping

被引:0
作者
Miao, Lijun [1 ]
Qiu, Linlin [1 ]
机构
[1] Liaoning Normal Univ, Sch Math, Dalian 116029, Peoples R China
基金
中国国家自然科学基金;
关键词
stochastic nonlinear Schr & ouml; dinger equation; global well-posedness; energy-critical damping; additive noise; energy space;
D O I
10.3390/math12162501
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Cauchy problem for the stochastic nonlinear Schr & ouml;dinger equation augmented by nonlinear energy-critical damping term arising in nonlinear optics and quantum field theory. Through examining the behavior of the momentum and energy functionals, we almost surely prove the existence and uniqueness of global solutions with continuous H1(Rd) valued paths. The results cover either defocusing nonlinearity in the full energy critical and subcritical range of exponents or focusing nonlinearity in the full subcritical range, as in the deterministic case.
引用
收藏
页数:12
相关论文
共 13 条
[1]   Mean-field description of collapsing and exploding Bose-Einstein condensates [J].
Adhikari, SK .
PHYSICAL REVIEW A, 2002, 66 (01) :8
[2]   On Nonlinear Schrodinger-Type Equations with Nonlinear Damping [J].
Antonelli, Paolo ;
Carles, Remi ;
Sparber, Christof .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (03) :740-762
[3]   Stochastic nonlinear Schrodinger equations [J].
Barbu, Viorel ;
Roeckner, Michael ;
Zhang, Deng .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 136 :168-194
[4]   Optical soliton perturbation with nonlinear damping and saturable amplifiers [J].
Biswas, A .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2001, 56 (06) :521-537
[5]  
Cazenave T., 2003, SEMILINEAR SCHRDINGE
[6]   ON GLOBAL EXISTENCE AND BLOW-UP FOR DAMPED STOCHASTIC NONLINEAR SCHRODINGER EQUATION [J].
Cui, Jianbo ;
Hong, Jialin ;
Sun, Liying .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (12) :6837-6854
[7]   The stochastic nonlinear Schrodinger equation in H 1 [J].
de Bouard, A ;
Debussche, A .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2003, 21 (01) :97-126
[8]   Representation formula for stochastic Schrodinger evolution equations and applications [J].
de Bouard, Anne ;
Fukuizumi, Reika .
NONLINEARITY, 2012, 25 (11) :2993-3022
[9]   Long Time Behavior of Stochastic NLS with a Small Multiplicative Noise [J].
Fan, Chenjie ;
Xu, Weijun ;
Zhao, Zehua .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 404 (01) :563-595
[10]  
Feng B, 2015, ELECTRON J DIFFER EQ, V2015, P1