A review of the nanofiltration membrane for magnesium and lithium separation from salt-lake brine

被引:21
|
作者
Zhang, Lei [1 ]
Hu, Mengyang [2 ]
He, Benqiao [3 ]
Pei, Hongchang [1 ]
Li, Xianhui [4 ]
Matsuyama, Hideto [2 ]
机构
[1] Shandong Univ Technol, Sch Chem & Chem Engn, Zibo, Peoples R China
[2] Kobe Univ, Res Ctr Membrane & Film Technol, Kobe, Japan
[3] Tiangong Univ, Sch Mat Sci & Engn, State Key Lab Separat Membranes & Membrane Proc, Tianjin 300387, Peoples R China
[4] Guangdong Univ Technol, Sch Ecol Environm & Resources, Key Lab City Cluster Environm Safety & Green Dev, Minist Educ, Guangzhou, Peoples R China
关键词
Nanofiltration membrane; Size sieving; Donnan effect; Interfacial polymerization; Magnesium and lithium separation; HOLLOW-FIBER MEMBRANES; CROSS-LINKING; INTERFACIAL POLYMERIZATION; PHYSIOCHEMICAL PROPERTIES; NANOCOMPOSITE MEMBRANES; POLYAMIDE NANOFILMS; HIGH-FLUX; ION; NF; POLYETHYLENEIMINE;
D O I
10.1016/j.seppur.2024.129169
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Nanofiltration (NF) membrane with small pore size and charged properties has attracted more attention recently in lithium extraction from salt-lake brine for addressing the escalating demand for lithium resources. Different kinds of NF membrane have been developed to accomplish the high efficiency Mg2+ and Li+ separation. To enhance comprehension of NF membranes in Mg2+ and Li+ separation, we propose a critical review focusing on the preparation method and Mg2+ and Li+ separation performance. According to the separation mechanism for Mg2+ and Li+, the NF membranes were defined as five types: (1) negatively charged NF membrane, (2) positively charged NF membrane, (3) mix-charged NF membrane, (4) size-sieving NF membrane and (5) bionic NF membrane. It is pointed out that the commercially available NF membrane with negatively charged property should be designed with narrow pore size distribution and the biggest pore size not more than the hydration diameter of Mg2+ to improve the Mg2+ and Li+ selectivity. Besides, the space distribution of charges in separation layer is also critical for Mg2+ and Li+ separation. This kind of NF membrane is still regarded as the mainstream membrane materials for Mg2+ and Li+ separation. Even though the positively charged NF membrane improves the rejection of Mg2+, it also increases the retention of Li+ at the same time, which leads to low Li+ permeability and further reduces the Mg2+ and Li+ separation efficiency. Besides, the positively charged NF membrane is easily polluted by nature organic matters with negatively charged property extensively existing in salt-lake brine. The hollow fiber NF membrane fabricated via layer-by-layer (LBL) assembly of polyelectrolytes should be further developed to achieve commercial application due to their high separation efficiency, high packing density, acid/ alkali/chlorine resistance, and good antifouling capacity. This review provides insight into the optimization and future development direction of the NF membrane design for Mg2+ and Li+ separation.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Nanofiltration membrane for enhancement in lithium recovery from salt-lake brine: A review
    Wen, Hui
    Liu, Zhiyu
    Xu, Jiajie
    Chen, J. Paul
    DESALINATION, 2024, 591
  • [2] Nanofiltration Membranes for Efficient Lithium Extraction from Salt-Lake Brine: A Critical Review
    Yong, Ming
    Yang, Yang
    Sun, Liangliang
    Tang, Meng
    Wang, Zhuyuan
    Xing, Chao
    Hou, Jingwei
    Zheng, Min
    Chui, Ting Fong May
    Li, Zhikao
    Yang, Zhe
    ACS ENVIRONMENTAL AU, 2024, 5 (01): : 12 - 34
  • [3] Separation performance and fouling analyses of nanofiltration membrane for lithium extraction from salt lake brine
    Li, Y.
    Wang, M.
    Xiang, X.
    Zhao, Y. J.
    Peng, Z. J.
    JOURNAL OF WATER PROCESS ENGINEERING, 2023, 54
  • [4] Designed strategies of nanofiltration technology for Mg2+/Li+ separation from salt-lake brine: A comprehensive review
    Zhang, Tong
    Zheng, Wenjia
    Wang, Qiaoying
    Wu, Zhichao
    Wang, Zhiwei
    DESALINATION, 2023, 546
  • [5] Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine
    Sun, Ying
    Wang, Qi
    Wang, Yunhao
    Yun, Rongping
    Xiang, Xu
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 256
  • [6] Effects of pH and salinity on the separation of magnesium and lithium from brine by nanofiltration
    Li, Yan
    Zhao, Youjing
    Wang, Min
    DESALINATION AND WATER TREATMENT, 2017, 97 : 141 - 150
  • [7] Highly Efficient Separation of Magnesium and Lithium and High Utilization of Magnesium from Salt Lake Brine by a ReactionCoupled -CoupTechnology
    Guo, Xiaoyu
    Hu, Shaofang
    Wang, Chenxi
    Duan, Haohong
    Xiang, Xu
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (19) : 6618 - 6626
  • [8] Preparation and characterization of positively charged polyamide composite nanofiltration hollow fiber membrane for lithium and magnesium separation
    Li, Xianhui
    Zhang, Chunjin
    Zhang, Shuning
    Li, Jianxin
    He, Benqiao
    Cui, Zhenyu
    DESALINATION, 2015, 369 : 26 - 36
  • [9] Polyethyleneimine modified polyamide composite nanofiltration membrane for separation of lithium and magnesium
    Li, Lingling
    Zhu, Guiru
    Tong, Yunbo
    Ding, Kaiyue
    Wang, Ziqi
    Meng, Chunxia
    Gao, Congjie
    JOURNAL OF WATER PROCESS ENGINEERING, 2023, 54
  • [10] Novel approaches for lithium extraction from salt-lake brines: A review
    Liu, Gui
    Zhao, Zhongwei
    Ghahreman, Ahmad
    HYDROMETALLURGY, 2019, 187 : 81 - 100