Energy-harvesting tile incorporating an origami coupling mechanism

被引:0
作者
Khazaaleh, Shadi [1 ,2 ]
Dalaq, Ahmed S. [3 ]
Daqaq, Mohammed F. [1 ,2 ]
机构
[1] NYU, Tandon Sch Engn, Dept Mech & Aerosp Engn, Brooklyn, NY 11201 USA
[2] New York Univ Abu Dhabi, Engn Div, Abu Dhabi, U Arab Emirates
[3] King Fahd Univ Petr & Minerals, Bioengn Dept, Dhahran 31261, Saudi Arabia
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2024年 / 382卷 / 2283期
关键词
origami; Kresling; energy; harvester; tile; DESIGN;
D O I
10.1098/rsta.2024.0015
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present the design and evaluation of a simple, compact and efficient electromagnetic energy harvesting tile that can be used to harness energy from footsteps. The proposed harvester incorporates a translational-rotational origami-inspired coupling mechanism to transform the axial loads exerted by human footsteps into a localized rotation of an electromagnetic generator. The coupling mechanism employs a non-rigid tunable Kresling spring, the restorative behaviour of which is tunable to maximize energy transduction from the applied load to the generator. A computational model is developed to optimize the design parameters of the mechanism, which are then utilized to fabricate a prototype of the energy harvester. The tile is tested under loading conditions that mimic a human step, where it is demonstrated that it is capable of generating 4.18 W of electrical power per step with a surface power density of 2609 mu W cm-2.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.
引用
收藏
页数:21
相关论文
共 64 条
[1]   Internet of Things-enabled smart cities: State-of-the-art and future trends [J].
Alavi, Amir H. ;
Jiao, Pengcheng ;
Buttlar, William G. ;
Lajnef, Nizar .
MEASUREMENT, 2018, 129 :589-606
[2]  
[Anonymous], Vero: A Realistic Multi-Color 3D Printing Material | Stratasys
[3]   Piezoelectric Nylon-11 Fibers for Electronic Textiles, Energy Harvesting and Sensing [J].
Anwar, Saleem ;
Hassanpour Amiri, Morteza ;
Jiang, Shuai ;
Abolhasani, Mohammad Mahdi ;
Rocha, Paulo R. F. ;
Asadi, Kamal .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (04)
[4]  
Architectural and Transportation Barriers Compliance Board, 2000, ADAAG manual: A guide to the americans with disabilities act accessibility guidelines
[5]   Comparison of electromagnetic and piezoelectric vibration energy harvesters: Model and experiments [J].
Arroyo, E. ;
Badel, A. ;
Formosa, F. ;
Wu, Y. ;
Qiu, J. .
SENSORS AND ACTUATORS A-PHYSICAL, 2012, 183 :148-156
[6]   Footstep-powered floor tile: Design and evaluation of an electromagnetic frequency up-converted energy harvesting system enhanced by a cylindrical Halbach array [J].
Asadi, Mahdi ;
Ahmadi, Rouhollah ;
Abazari, Amir Musa .
SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2023, 60
[7]   Electromagnetic-triboelectric energy harvester based on vibration-to-rotation conversion for human motion energy exploitation [J].
Bai, Shanming ;
Cui, Juan ;
Zheng, Yongqiu ;
Li, Gang ;
Liu, Tingshan ;
Liu, Yabing ;
Hao, Congcong ;
Xue, Chenyang .
APPLIED ENERGY, 2023, 329
[8]   Peristaltic locomotion without digital controllers: Exploiting multi-stability in origami to coordinate robotic motion [J].
Bhovad, Priyanka ;
Kaufmann, Joshua ;
Li, Suyi .
EXTREME MECHANICS LETTERS, 2019, 32
[9]  
Boldea I., 2017, CES Transactions on Electrical Machines and Systems, V1, P3, DOI DOI 10.23919/TEMS.2017.7911104
[10]   Bistable Behavior of the Cylindrical Origami Structure With Kresling Pattern [J].
Cai Jianguo ;
Deng Xiaowei ;
Zhou Ya ;
Feng Jian ;
Tu Yongming .
JOURNAL OF MECHANICAL DESIGN, 2015, 137 (06) :1DUMMMY