Large-amplitude internal waves and turbulent mixing in three-layer flows under a rigid lid

被引:0
|
作者
Chesnokov, A. [1 ]
Shmakova, N. [1 ]
Zhao, B. [2 ]
Zhang, T. [2 ]
Wang, Z. [2 ,3 ]
Duan, W. [2 ]
机构
[1] Lavrentyev Inst Hydrodynam, 15 Lavrentyev Ave, Novosibirsk 630090, Russia
[2] Harbin Engn Univ, Coll Shipbuilding Engn, Harbin 150001, Peoples R China
[3] Harbin Engn Univ, Qingdao Innovat & Dev Ctr, Qingdao 266000, Peoples R China
基金
中国国家自然科学基金; 俄罗斯科学基金会;
关键词
DISPERSIVE NONLINEAR-WAVES; SOLITARY WAVES; 2-LAYER FLOWS; FREE-SURFACE; SHEAR; BREAKING; INSTABILITIES; FLUID; MODEL;
D O I
10.1063/5.0216033
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We consider a nonlinear long-wave Boussinesq-type model describing the propagation of breaking internal solitary waves in a three-layer flow between two rigid boundaries. The Green-Naghdi-type equations govern the fluid flow in the top and bottom homogeneous layers. In the intermediate hydrostatic layer, the fluid is non-homogeneous, and its flow is described by the depth-averaged shallow water equations for shear flows. The velocity shear in the outer layers can lead to the development of the Kelvin-Helmholtz instability and turbulent mixing. To take this into account, we propose a simple law of vertical mixing, which governs the interaction of these layers. Stationary solutions and non-stationary calculations show the effect of mixing (or breaking) for waves of sufficiently large amplitude. We construct steady-state soliton-like solutions of the three-layer model adjacent to a given constant flow. The obtained theoretical profiles of breaking solitary waves are consistent with laboratory experiments.
引用
收藏
页数:15
相关论文
共 33 条