Ultra-short-term wind power forecasting method based on multi-variable joint extraction of spatial-temporal features

被引:1
|
作者
Lei, Zhengling [1 ]
Wang, Caiyan [1 ]
Liu, Tao [2 ]
Wang, Fang [1 ]
Xu, Jingxiang [1 ]
Yao, Guoquan [3 ]
机构
[1] Shanghai Ocean Univ, Coll Engn Sci & Technol, Shanghai Engn Res Ctr Marine Renewable Energy, Shanghai 201306, Peoples R China
[2] Shanghai Maritime Univ, Coll Transport & Commun, Shanghai 200135, Peoples R China
[3] Wuhan Univ Technol, Key Lab High Performance Ship Technol, Minist Educ, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
NEURAL-NETWORK;
D O I
10.1063/5.0212699
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate and reliable wind power forecasting is imperative for wind power stations' stable and efficient operation. Information such as wind speed and wind direction in the same wind field has spatial-temporal differences. Considering the spatial-temporal changes in wind fields can improve model prediction accuracy. However, existing methods suffer from limited ability to capture correlation features among variables, information loss in spatial-temporal feature extraction, and neglect short-term temporal features. This paper introduces a novel ultra-short-term wind power forecasting method based on the combination of a deep separable convolutional neural network (DSCNN) and long- and short-term time-series network (LSTNet), incorporating maximum information coefficient (MIC) to realize multi-variable joint extraction of spatial-temporal features. The method utilizes MIC to jointly analyze and process the multi-variate variables before spatial-temporal feature extraction to avoid information redundancy. The spatial features between input variables and wind power are extracted by deep convolution and pointwise convolution in DSCNN. Then, a convolutional neural network and gated recurrent unit in LSTNet are combined to capture long-term and short-term temporal features. In addition, an autoregressive module is employed to accept features extracted by MIC to enhance the model's learning of temporal features. Based on real datasets, the performance of models is validated through comprehensive evaluation experiments such as comparison experiments, ablation experiments, and interval prediction methods. The results show that the proposed method reduces mean absolute error by up to 4.66% and provides more accurate prediction intervals, verifying the accuracy and effectiveness of the proposed method.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Ultra-short-term probabilistic wind power forecasting with spatial-temporal multi-scale features and K-FSDW based weight
    Che, Jinxing
    Yuan, Fang
    Deng, Dewen
    Jiang, Zheyong
    APPLIED ENERGY, 2023, 331
  • [2] An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model
    Lv, Yunlong
    Hu, Qin
    Xu, Hang
    Lin, Huiyao
    Wu, Yufan
    Energy, 2024, 293
  • [3] An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model
    Lv, Yunlong
    Hu, Qin
    Xu, Hang
    Lin, Huiyao
    Wu, Yufan
    ENERGY, 2024, 293
  • [4] An ultra-short-term wind power forecasting method in regional grids
    Li, Zhi
    Han, Xueshan
    Han, Li
    Kang, Kai
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2010, 34 (07): : 90 - 94
  • [5] Ultra-short-term wind speed prediction based on deep spatial-temporal residual network
    Liang, Xinhao
    Hu, Feihu
    Li, Xin
    Zhang, Lin
    Feng, Xuan
    Abu Gunmi, Mohammad
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2023, 15 (04)
  • [6] Ultra-short-term Forecasting Method of Wind Power Based on Fluctuation Law Mining
    Liang Z.
    Wang Z.
    Feng S.
    Dong C.
    Wan X.
    Qiu G.
    Wang, Zheng (wangz@epri.sgcc.com.cn), 1600, Power System Technology Press (44): : 4096 - 4104
  • [7] Ultra-short-term Power Prediction Model Considering Spatial-Temporal Characteristics of Offshore Wind Turbines
    Lin Z.
    Liu K.
    Shen F.
    Zhao X.
    Liang Y.
    Dong M.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2022, 46 (23): : 59 - 66
  • [8] Ultra-Short-Term Wind Power Subsection Forecasting Method Based on Extreme Weather
    Yu, Guang Zheng
    Lu, Liu
    Tang, Bo
    Wang, Si Yuan
    Chung, C. Y.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (06) : 5045 - 5056
  • [9] Ultra-short-term Probabilistic Forecasting of Wind Power Based on Temporal Mixture Density Network
    Dong X.
    Sun Y.
    Pu T.
    Wang X.
    Li Y.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2022, 46 (14): : 93 - 100
  • [10] Research on Ultra-Short-Term Wind Power Forecasting Based on Refactored Representation of Environmental Features
    Wang, Feng
    Jiang, Jiading
    Zhang, Lingling
    PROCEEDINGS OF 2021 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY WORKSHOPS AND SPECIAL SESSIONS: (WI-IAT WORKSHOP/SPECIAL SESSION 2021), 2021, : 375 - 379