Deep learning-assisted multispectral imaging for early screening of skin diseases

被引:4
作者
Jiang, Zhengshuai [1 ]
Gu, Xiaming [1 ]
Chen, Dongdong [4 ,5 ]
Zhang, Min [3 ]
Xu, Congcong [2 ]
机构
[1] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Shandong Provin, Peoples R China
[2] Shandong Univ, Qilu Hosp, Dept Dermatol, Jinan, Peoples R China
[3] Shandong Univ, Sch Environm Sci & Engn, Shandong Key Lab Environm Proc & Hlth, Qingdao 266237, Peoples R China
[4] Shandong First Med Univ, Dept Urol, Affiliated Hosp 1, Jinan 250014, Peoples R China
[5] Shandong Prov Qianfoshan Hosp, Jinan 250014, Peoples R China
基金
中国国家自然科学基金;
关键词
Skin disease; Multispectral imaging; Deep learning; Diagnostic assistance; CLINICAL-DIAGNOSIS; MELANOMA; RISK;
D O I
10.1016/j.pdpdt.2024.104292
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Introduction: Melanocytic nevi (MN), warts, seborrheic keratoses (SK), and psoriasis are four common types of skin surface lesions that typically require dermatoscopic examination for definitive diagnosis in clinical dermatology settings. This process is labor-intensive and resource-consuming. Traditional methods for diagnosing skin lesions rely heavily on the subjective judgment of dermatologists, leading to issues in diagnostic accuracy and prolonged detection times. Objectives: This study aims to introduce a multispectral imaging (MSI)-based method for the early screening and detection of skin surface lesions. By capturing image data at multiple wavelengths, MSI can detect subtle spectral variations in tissues, significantly enhancing the differentiation of various skin conditions. Methods: The proposed method utilizes a pixel-level mosaic imaging spectrometer to capture multispectral images of lesions, followed by reflectance calibration and standardization. Regions of interest were manually extracted, and the spectral data were subsequently exported for analysis. An improved one-dimensional convolutional neural network is then employed to train and classify the data. Results: The new method achieves an accuracy of 96.82 % on the test set, demonstrating its efficacy. Conclusion: This multispectral imaging approach provides a non-contact and non-invasive method for early screening, effectively addressing the subjective identification of lesions by dermatologists and the prolonged detection times associated with conventional methods. It offers enhanced diagnostic accuracy for a variety of skin lesions, suggesting new avenues for dermatological diagnostics.
引用
收藏
页数:11
相关论文
共 35 条
[1]  
A.Q. Z A.K. B B.S.K. B, 2020, Engineering, DOI [10.1016/j.eng.2020.07.026, DOI 10.1016/J.ENG.2020.07.026]
[2]   Hyperspectral and multispectral image processing for gross-level tumor detection in skin lesions: a systematic review [J].
Aloupogianni, Eleni ;
Ishikawa, Masahiro ;
Kobayashi, Naoki ;
Obi, Takashi .
JOURNAL OF BIOMEDICAL OPTICS, 2022, 27 (06)
[3]   Emerging technology for intraoperative margin assessment and post-operative tissue diagnosis for breast-conserving surgery [J].
Aref, Mohamed Hisham ;
El-Gohary, Mohamed ;
Elrewainy, Ahmed ;
Mahmoud, Alaaeldin ;
Aboughaleb, Ibrahim H. ;
Hussein, Abdallah Abdelkader ;
Abd El-Ghaffar, Sara ;
Mahran, Ashraf ;
El-Sharkawy, Yasser H. .
PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY, 2023, 42
[4]   Hyperspectral image-based analysis of thermal damage for ex-vivo bovine liver utilizing radiofrequency ablation [J].
Aref, Mohamed Hisham ;
Aboughaleb, Ibrahim H. ;
Youssef, Abou-Bakr M. ;
El-Sharkawy, Yasser H. .
SURGICAL ONCOLOGY-OXFORD, 2021, 38
[5]   Acquired melanocytic nevi as risk factor for melanoma development. A comprehensive review of epidemiological data [J].
Bauer, J ;
Garbe, C .
PIGMENT CELL RESEARCH, 2003, 16 (03) :297-306
[6]   A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task [J].
Brinker, Titus J. ;
Hekler, Achim ;
Enk, Alexander H. ;
Klode, Joachim ;
Hauschild, Axel ;
Berking, Carola ;
Schilling, Bastian ;
Haferkamp, Sebastian ;
Schadendorf, Dirk ;
Froehling, Stefan ;
Utikal, Jochen S. ;
von Kalle, Christof ;
Ludwig-Peitsch, Wiebke ;
Sirokay, Judith ;
Heinzerling, Lucie ;
Albrecht, Magarete ;
Baratella, Katharina ;
Bischof, Lena ;
Chorti, Eleftheria ;
Dith, Anna ;
Drusio, Christina ;
Giese, Nina ;
Gratsias, Emmanouil ;
Griewank, Klaus ;
Hallasch, Sandra ;
Hanhart, Zdenka ;
Herz, Saskia ;
Hohaus, Katja ;
Jansen, Philipp ;
Jockenhoefer, Finja ;
Kanaki, Theodora ;
Knispel, Sarah ;
Leonhard, Katja ;
Martaki, Anna ;
Matei, Liliana ;
Matull, Johanna ;
Olischewski, Alexandra ;
Petri, Maximilian ;
Placke, Jan-Malte ;
Raub, Simon ;
Salva, Katrin ;
Schlott, Swantje ;
Sody, Elsa ;
Steingrube, Nadine ;
Stoffels, Ingo ;
Ugurel, Selma ;
Sondermann, Wiebke ;
Zaremba, Anne ;
Gebhardt, Christoffer ;
Booken, Nina .
EUROPEAN JOURNAL OF CANCER, 2019, 111 :148-154
[7]   A POSSIBLE NEW TOOL FOR CLINICAL-DIAGNOSIS OF MELANOMA - THE COMPUTER [J].
CASCINELLI, N ;
FERRARIO, M ;
TONELLI, T ;
LEO, E .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 1987, 16 (02) :361-367
[8]   Clinical performance of a novel hyperspectral imaging device for cutaneous melanoma and pigmented skin lesions in Caucasian skin [J].
Christensen, Gustav Boelsgaard ;
Nagaoka, Takashi ;
Kiyohara, Yoshio ;
Johansson, Iva ;
Ingvar, Christian ;
Nakamura, Atsushi ;
Sota, Takayuki ;
Nielsen, Kari .
SKIN RESEARCH AND TECHNOLOGY, 2021, 27 (05) :803-809
[9]   The skin cancer classification using deep convolutional neural network [J].
Dorj, Ulzii-Orshikh ;
Lee, Keun-Kwang ;
Choi, Jae-Young ;
Lee, Malrey .
MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (08) :9909-9924
[10]   Oxygen saturation measurements using novel diffused reflectance with hyperspectral imaging: Towards facile COVID-19 diagnosis [J].
El-Sharkawy, Yasser H. ;
Aref, Mohamed Hisham ;
Elbasuney, Sherif ;
Radwan, Sara M. ;
El-Sayyad, Gharieb S. .
OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (05)