DIRECTED GRAPHS WITH LOWER ORIENTATION RAMSEY THRESHOLDS

被引:0
作者
Barros, Gabriel Ferreira [1 ]
Cavalar, Bruno Pasqualotto [2 ]
Kohayakawa, Yoshiharu [1 ]
Mota, Guilherme Oliveira [1 ]
Naia, Tassio [3 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508900 Sao Paulo, Brazil
[2] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, England
[3] Ctr Reserca Matemat, Campus Bellaterra,Edif C, Bellaterra 08193, Spain
基金
巴西圣保罗研究基金会;
关键词
Ramsey theory; oriented graphs; thresholds; CONJECTURE; TREES;
D O I
10.1051/ro/2024090
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We investigate the threshold p((H) over right arrow) = p((H) over right arrow)(n) for the Ramsey-type property G(n, p) -> (sic)H, where G(n, p) is the binomial random graph and G -> (H) over right arrow indicates that every orientation of the graph G contains the oriented graph (sic) H as a subdigraph. Similarly to the classical Ramsey setting, the upper bound p((H) over right arrow) <= Cn(-1/m2((H) over right arrow)) is known to hold for some constant C = C((H) over right arrow), where m(2)((H) over right arrow) denotes the maximum 2-density of the underlying graph H of (H) over right arrow. While this upper bound is indeed the threshold for some (H) over right arrow, this is not always the case. We obtain examples arising from rooted products of orientations of sparse graphs (such as forests, cycles and, more generally, subcubic {K-3, K-3,K-3}-free graphs) and arbitrarily rooted transitive triangles.
引用
收藏
页码:3607 / 3619
页数:13
相关论文
共 50 条
  • [31] Size Ramsey numbers for some regular graphs
    Bielak, Halina
    DISCRETE MATHEMATICS, 2009, 309 (22) : 6446 - 6449
  • [32] On the Ramsey number of sparse 3-graphs
    Nagle, Brendan
    Olsen, Sayaka
    Roedl, Vojtech
    Schacht, Mathias
    GRAPHS AND COMBINATORICS, 2008, 24 (03) : 205 - 228
  • [33] LOWER BOUNDS ON GEOMETRIC RAMSEY FUNCTIONS
    Elias, Marek
    Matousek, Jiri
    Roldan-Pensado, Edgardo
    Safernova, Zuzana
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (04) : 1960 - 1970
  • [34] Anti-Ramsey numbers for matchings in 3-regular bipartite graphs
    Jin, Zemin
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 292 : 114 - 119
  • [35] Ramsey degrees of bipartite graphs:: A primitive recursive proof
    Fouché, WL
    Pretorius, LM
    Swarlepoel, CJ
    DISCRETE MATHEMATICS, 2005, 293 (1-3) : 111 - 119
  • [36] Ramsey numbers of trees and unicyclic graphs versus fans
    Brennan, Matthew
    DISCRETE MATHEMATICS, 2017, 340 (05) : 969 - 983
  • [37] On the minimum degree of minimal Ramsey graphs for multiple colours
    Fox, Jacob
    Grinshpun, Andrey
    Liebenau, Anita
    Person, Yury
    Szabo, Tibor
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 120 : 64 - 82
  • [38] INDEPENDENT SETS IN HYPERGRAPHS AND RAMSEY PROPERTIES OF GRAPHS AND THE INTEGERS
    Hancock, Robert
    Staden, Katherine
    Treglown, Andrew
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (01) : 153 - 188
  • [39] A canonical Ramsey theorem with list constraints in random graphs
    Alvarado, Jose D.
    Kohayakawa, Yoshiharu
    Morris, Patrick
    Mota, Guilherme Oliveira
    XII LATIN-AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, LAGOS 2023, 2023, 224 : 13 - 19
  • [40] Anti-Ramsey number of matchings in outerplanar graphs
    Jin, Zemin
    Yu, Rui
    Sun, Yuefang
    DISCRETE APPLIED MATHEMATICS, 2024, 345 : 125 - 135