DIRECTED GRAPHS WITH LOWER ORIENTATION RAMSEY THRESHOLDS

被引:0
|
作者
Barros, Gabriel Ferreira [1 ]
Cavalar, Bruno Pasqualotto [2 ]
Kohayakawa, Yoshiharu [1 ]
Mota, Guilherme Oliveira [1 ]
Naia, Tassio [3 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508900 Sao Paulo, Brazil
[2] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, England
[3] Ctr Reserca Matemat, Campus Bellaterra,Edif C, Bellaterra 08193, Spain
基金
巴西圣保罗研究基金会;
关键词
Ramsey theory; oriented graphs; thresholds; CONJECTURE; TREES;
D O I
10.1051/ro/2024090
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We investigate the threshold p((H) over right arrow) = p((H) over right arrow)(n) for the Ramsey-type property G(n, p) -> (sic)H, where G(n, p) is the binomial random graph and G -> (H) over right arrow indicates that every orientation of the graph G contains the oriented graph (sic) H as a subdigraph. Similarly to the classical Ramsey setting, the upper bound p((H) over right arrow) <= Cn(-1/m2((H) over right arrow)) is known to hold for some constant C = C((H) over right arrow), where m(2)((H) over right arrow) denotes the maximum 2-density of the underlying graph H of (H) over right arrow. While this upper bound is indeed the threshold for some (H) over right arrow, this is not always the case. We obtain examples arising from rooted products of orientations of sparse graphs (such as forests, cycles and, more generally, subcubic {K-3, K-3,K-3}-free graphs) and arbitrarily rooted transitive triangles.
引用
收藏
页码:3607 / 3619
页数:13
相关论文
共 50 条
  • [1] ORIENTATION RAMSEY THRESHOLDS FOR CYCLES AND CLIQUES
    Barros, Gabriel Ferreira
    Cavalar, Bruno Pasqualotto
    Kohayakawa, Yoshiharu
    Naia, Tassio
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (04) : 2844 - 2857
  • [2] Directed Ramsey number for trees
    Bucic, Matija
    Letzter, Shoham
    Sudakov, Benny
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 137 : 145 - 177
  • [3] Ramsey goodness of trees in random graphs
    Araujo, Pedro
    Moreira, Luiz
    Pavez-Signe, Matias
    RANDOM STRUCTURES & ALGORITHMS, 2023, 62 (04) : 761 - 790
  • [4] A Note on Regular Ramsey Graphs
    Alon, Noga
    Ben-Shimon, Sonny
    Krivelevich, Michael
    JOURNAL OF GRAPH THEORY, 2010, 64 (03) : 244 - 249
  • [5] Minimal ordered Ramsey graphs
    Rollin, Jonathan
    DISCRETE MATHEMATICS, 2020, 343 (10)
  • [6] On globally sparse Ramsey graphs
    Muetze, Torsten
    Peter, Ueli
    DISCRETE MATHEMATICS, 2013, 313 (22) : 2626 - 2637
  • [7] The Ramsey theory of Henson graphs
    Dobrinen, Natasha
    JOURNAL OF MATHEMATICAL LOGIC, 2023, 23 (01)
  • [8] Degree Ramsey Numbers of Graphs
    Kinnersley, William B.
    Milans, Kevin G.
    West, Douglas B.
    COMBINATORICS PROBABILITY & COMPUTING, 2012, 21 (1-2) : 229 - 253
  • [9] Ramsey simplicity of random graphs
    Boyadzhiyska, Simona
    Clemens, Dennis
    Das, Shagnik
    Gupta, Pranshu
    COMBINATORICS PROBABILITY AND COMPUTING, 2024,
  • [10] Ramsey unsaturated and saturated graphs
    Balister, P
    Lehel, J
    Schelp, RH
    JOURNAL OF GRAPH THEORY, 2006, 51 (01) : 22 - 32