RA-YOLOv8: An Improved YOLOv8 Seal Text Detection Method

被引:1
|
作者
Sun, Han [1 ]
Tan, Chaohong [2 ]
Pang, Si [1 ]
Wang, Hancheng [2 ]
Huang, Baohua [1 ,2 ]
机构
[1] Guangxi Univ, Sch Comp & Elect & Informat, Nanning 530004, Peoples R China
[2] Informat Ctr Guangxi Zhuang Autonomous Reg, Guangxi Key Lab Digital Infrastruct, Nanning 530000, Peoples R China
基金
中国国家自然科学基金;
关键词
YOLOv8; seal text detection; RFEMA; AKConv;
D O I
10.3390/electronics13153001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To detect text from electronic seals that have significant background interference, blurring, text overlapping, and curving, an improved YOLOv8 model named RA-YOLOv8 was developed. The model is primarily based on YOLOv8, with optimized structures in its backbone and neck. The receptive-field attention and efficient multi-scale attention (RFEMA) module is introduced in the backbone. The model's ability to extract and integrate local and global features is enhanced by combining the attention on the receptive-field spatial feature of the receptive-field attention and coordinate attention (RFCA) module and the cross-spatial learning of the efficient multi-scale attention (EMA) module. The Alterable Kernel Convolution (AKConv) module is incorporated in the neck, enhancing the model's detection accuracy of curved text by dynamically adjusting the sampling position. Furthermore, to boost the model's detection performance, the original loss function is replaced with the bounding box regression loss function of Minimum Point Distance Intersection over Union (MPDIoU). Experimental results demonstrate that RA-YOLOv8 surpasses YOLOv8 in terms of precision, recall, and F1 value, with improvements of 0.4%, 1.6%, and 1.03%, respectively, validating its effectiveness and utility in seal text detection.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Improved container damage detection algorithm of YOLOv8
    Yu, Ding
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ALGORITHMS, SOFTWARE ENGINEERING, AND NETWORK SECURITY, ASENS 2024, 2024, : 90 - 95
  • [22] Vehicle Detection and Tracking Based on Improved YOLOv8
    Liu, Yunxiang
    Shen, Shujun
    IEEE ACCESS, 2025, 13 : 24793 - 24803
  • [23] Method for the lightweight detection of wheat disease using improved YOLOv8
    Ma C.
    Zhang H.
    Ma X.
    Wang J.
    Zhang Y.
    Zhang X.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (05): : 187 - 195
  • [24] Improved YOLOv8 Method for Multi-scale Pothole Detection
    Chang, Jiarui
    Chen, Zhan
    Xia, E.
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XI, ICIC 2024, 2024, 14872 : 383 - 395
  • [25] Ship Detection Based on Improved YOLOv8 Algorithm
    Cao, Xintong
    Shen, Jiayu
    Wang, Tao
    Zhang, Chenxu
    2024 3RD INTERNATIONAL CONFERENCE ON ROBOTICS, ARTIFICIAL INTELLIGENCE AND INTELLIGENT CONTROL, RAIIC 2024, 2024, : 20 - 23
  • [26] A wildfire smoke detection based on improved YOLOv8
    Zhou, Jieyang
    Li, Yang
    Yin, Pengfei
    International Journal of Information and Communication Technology, 2024, 25 (06) : 52 - 67
  • [27] Improved Road Damage Detection Algorithm of YOLOv8
    Li, Song
    Shi, Tao
    Jing, Fangke
    Computer Engineering and Applications, 2023, 59 (23) : 165 - 174
  • [28] Face Mask Detection Based on Improved YOLOv8
    Lin, Bingyan
    Hou, Maidi
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 365 - 375
  • [29] Safety Helmet Detection Based on Improved YOLOv8
    Lin, Bingyan
    IEEE ACCESS, 2024, 12 : 28260 - 28272
  • [30] A method for counting fish based on improved YOLOv8
    Zhang, Zhenzuo
    Li, Jiawei
    Su, Cuiwen
    Wang, Zhiyong
    Li, Yachao
    Li, Daoliang
    Chen, Yingyi
    Liu, Chunhong
    AQUACULTURAL ENGINEERING, 2024, 107