Machine Learning Integrity and Privacy in Adversarial Environments

被引:0
|
作者
Oprea, Alina [1 ]
机构
[1] Northeastern Univ, Boston, MA 02115 USA
关键词
Security and privacy of machine learning systems; adversarial machine learning; poisoning attacks in machine learning; machine learning privacy;
D O I
10.1145/3450569.3462164
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:1 / 2
页数:2
相关论文
共 50 条
  • [31] Privacy-friendly machine learning - Part 2: Privacy attacks and privacy-preserving machine learning
    Stock J.
    Petersen T.
    Behrendt C.-A.
    Federrath H.
    Kreutzburg T.
    Informatik Spektrum, 2022, 45 (3) : 137 - 145
  • [32] Security and Privacy in Machine Learning
    Chandran, Nishanth
    INFORMATION SYSTEMS SECURITY, ICISS 2023, 2023, 14424 : 229 - 248
  • [33] Privacy: A machine learning view
    Vinterbo, SA
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2004, 16 (08) : 939 - 948
  • [34] An Adversarial Machine Learning Based Approach for Privacy Preserving Face Recognition in Distributed Smart City Surveillance
    Wahida, Farah
    Chamikara, M. A. P.
    Khalil, Ibrahim
    Atiquzzaman, Mohammed
    COMPUTER NETWORKS, 2024, 254
  • [35] Adversarial Machine Learning in the Physical Domain
    Drenkow, Nathan G.
    Fendley, Neil M.
    Lennon, Max
    Burlina, Philippe M.
    Wang, I-Jeng
    Johns Hopkins APL Technical Digest (Applied Physics Laboratory), 2021, 35 (04): : 426 - 429
  • [36] Adversarial Machine Learning in the Physical Domain
    Drenkow, Nathan G.
    Fendley, Neil M.
    Lennon, Max
    Burlina, Philippe M.
    Wang, I-Jeng
    JOHNS HOPKINS APL TECHNICAL DIGEST, 2021, 35 (04): : 426 - 429
  • [37] Adversarial attacks on medical machine learning
    Finlayson, Samuel G.
    Bowers, John D.
    Ito, Joichi
    Zittrain, Jonathan L.
    Beam, Andrew L.
    Kohane, Isaac S.
    SCIENCE, 2019, 363 (6433) : 1287 - 1289
  • [38] Adversarial Machine Learning: Bayesian Perspectives
    Insua, David Rios
    Naveiro, Roi
    Gallego, Victor
    Poulos, Jason
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (543) : 2195 - 2206
  • [39] Machine Learning for Adversarial Agent Microworlds
    Scholz, J.
    Hengst, B.
    Calbert, G.
    Antoniades, A.
    Smet, P.
    Marsh, L.
    Kwok, H-W.
    Gossink, D.
    MODSIM 2005: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: ADVANCES AND APPLICATIONS FOR MANAGEMENT AND DECISION MAKING: ADVANCES AND APPLICATIONS FOR MANAGEMENT AND DECISION MAKING, 2005, : 2195 - 2201
  • [40] Adversarial Controls for Scientific Machine Learning
    Chuang, Kangway V.
    Keiser, Michael J.
    ACS CHEMICAL BIOLOGY, 2018, 13 (10) : 2819 - 2821