A Class Balanced Spatio-Temporal Self-Attention Model for Combat Intention Recognition
被引:0
|
作者:
Wang, Xuan
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 211106, Peoples R ChinaNanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 211106, Peoples R China
Wang, Xuan
[1
]
Jin, Benzhou
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 211106, Peoples R ChinaNanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 211106, Peoples R China
Jin, Benzhou
[1
]
Jia, Mingyang
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 211106, Peoples R ChinaNanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 211106, Peoples R China
Jia, Mingyang
[1
]
Wu, Gang
论文数: 0引用数: 0
h-index: 0
机构:
China Elect Technol Grp Corp, Res Inst 14, Nanjing 211106, Peoples R ChinaNanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 211106, Peoples R China
Wu, Gang
[2
]
Zhang, Xiaofei
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 211106, Peoples R ChinaNanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 211106, Peoples R China
Zhang, Xiaofei
[1
]
机构:
[1] Nanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 211106, Peoples R China
[2] China Elect Technol Grp Corp, Res Inst 14, Nanjing 211106, Peoples R China
来源:
IEEE ACCESS
|
2024年
/
12卷
基金:
中国国家自然科学基金;
关键词:
Feature extraction;
Time series analysis;
Data models;
Bayes methods;
Task analysis;
Encoding;
Target recognition;
Combat intention recognition;
long-tailed distribution;
self-attention;
D O I:
10.1109/ACCESS.2024.3442371
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
To address the issue of model performance degradation in combat intention recognition caused by the long-tailed distribution of battlefield data and the neglect of the spatial dimension information of multivariate time series data, this paper proposes a class balanced spatio-temporal self-attention (CBSTSA) model. By incorporating spatial and temporal attention mechanisms, the model captures interdependencies among features and extracts salient information from both temporal and spatial dimensions. Furthermore, taking the long-tailed distribution of battlefield data into account, a re-weighted class balanced loss function is introduced to train the model. Experimental results show the superiority of our CBSTSA model, e.g. achieving approximately 95.67% accuracy in typical scenarios, surpassing benchmark schemes by 4-5%.
机构:
Univ Sheffield, Dept Elect & Elect Engn, Sheffield S10 2TN, S Yorkshire, EnglandUniv Sheffield, Dept Elect & Elect Engn, Sheffield S10 2TN, S Yorkshire, England
Shao, Ling
Gao, Ruoyun
论文数: 0引用数: 0
h-index: 0
机构:
Leiden Univ, Dept Comp Sci, NL-2300 RA Leiden, NetherlandsUniv Sheffield, Dept Elect & Elect Engn, Sheffield S10 2TN, S Yorkshire, England
Gao, Ruoyun
Liu, Yan
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Comp, Hong Kong, Hong Kong, Peoples R ChinaUniv Sheffield, Dept Elect & Elect Engn, Sheffield S10 2TN, S Yorkshire, England
Liu, Yan
Zhang, Hui
论文数: 0引用数: 0
h-index: 0
机构:
United Int Coll, Dept Comp Sci & Technol, Zhuhai, Peoples R China
PKU HKUST Shenzhen Hong Kong Inst, Shenzhen Key Lab Intelligent Media & Speech, Shenzhen, Peoples R ChinaUniv Sheffield, Dept Elect & Elect Engn, Sheffield S10 2TN, S Yorkshire, England