A Class Balanced Spatio-Temporal Self-Attention Model for Combat Intention Recognition

被引:0
|
作者
Wang, Xuan [1 ]
Jin, Benzhou [1 ]
Jia, Mingyang [1 ]
Wu, Gang [2 ]
Zhang, Xiaofei [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 211106, Peoples R China
[2] China Elect Technol Grp Corp, Res Inst 14, Nanjing 211106, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Time series analysis; Data models; Bayes methods; Task analysis; Encoding; Target recognition; Combat intention recognition; long-tailed distribution; self-attention;
D O I
10.1109/ACCESS.2024.3442371
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To address the issue of model performance degradation in combat intention recognition caused by the long-tailed distribution of battlefield data and the neglect of the spatial dimension information of multivariate time series data, this paper proposes a class balanced spatio-temporal self-attention (CBSTSA) model. By incorporating spatial and temporal attention mechanisms, the model captures interdependencies among features and extracts salient information from both temporal and spatial dimensions. Furthermore, taking the long-tailed distribution of battlefield data into account, a re-weighted class balanced loss function is introduced to train the model. Experimental results show the superiority of our CBSTSA model, e.g. achieving approximately 95.67% accuracy in typical scenarios, surpassing benchmark schemes by 4-5%.
引用
收藏
页码:112074 / 112084
页数:11
相关论文
共 50 条
  • [31] Spatio-temporal chaos: A solvable model
    Diks, C
    Takens, F
    DeGoede, J
    PHYSICA D, 1997, 104 (3-4): : 269 - 285
  • [32] A Spatio-Temporal Attention-Based Model for Infant Movement Assessment From Videos
    Nguyen-Thai, Binh
    Le, Vuong
    Morgan, Catherine
    Badawi, Nadia
    Tran, Truyen
    Venkatesh, Svetha
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (10) : 3911 - 3920
  • [33] Multistage Spatio-Temporal Networks for Robust Sketch Recognition
    Li, Hanhui
    Jiang, Xudong
    Guan, Boliang
    Wang, Ruomei
    Thalmann, Nadia Magnenat
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 2683 - 2694
  • [34] ON THE USEFULNESS OF SELF-ATTENTION FOR AUTOMATIC SPEECH RECOGNITION WITH TRANSFORMERS
    Zhang, Shucong
    Loweimi, Erfan
    Bell, Peter
    Renals, Steve
    2021 IEEE SPOKEN LANGUAGE TECHNOLOGY WORKSHOP (SLT), 2021, : 89 - 96
  • [35] ESAformer: Enhanced Self-Attention for Automatic Speech Recognition
    Li, Junhua
    Duan, Zhikui
    Li, Shiren
    Yu, Xinmei
    Yang, Guangguang
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 471 - 475
  • [36] Spatio-Temporal Attention Adversarial Autoencoders for Enhanced Anomaly Detection in High-Pressure Grinding Rolls
    Zhang, Danwei
    Yu, Wen
    Xu, Quan
    Chai, Tianyou
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025,
  • [37] Spatio-temporal intention learning for recommendation of next point-of-interest
    Li, Hao
    Yue, Peng
    Li, Shangcheng
    Zhang, Chenxiao
    Yang, Can
    GEO-SPATIAL INFORMATION SCIENCE, 2024, 27 (02) : 384 - 397
  • [38] UniFormer: Unifying Convolution and Self-Attention for Visual Recognition
    Li, Kunchang
    Wang, Yali
    Zhang, Junhao
    Gao, Peng
    Song, Guanglu
    Liu, Yu
    Li, Hongsheng
    Qiao, Yu
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (10) : 12581 - 12600
  • [39] A Spatio-Temporal Isotropic Operator for the Attention-Point Extraction
    Palenichka, Roman M.
    Zaremba, Marek B.
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2009, 5702 : 318 - 325
  • [40] Efficient Spatio-Temporal Contrastive Learning for Skeleton-Based 3-D Action Recognition
    Gao, Xuehao
    Yang, Yang
    Zhang, Yimeng
    Li, Maosen
    Yu, Jin-Gang
    Du, Shaoyi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 405 - 417