A Class Balanced Spatio-Temporal Self-Attention Model for Combat Intention Recognition

被引:0
|
作者
Wang, Xuan [1 ]
Jin, Benzhou [1 ]
Jia, Mingyang [1 ]
Wu, Gang [2 ]
Zhang, Xiaofei [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 211106, Peoples R China
[2] China Elect Technol Grp Corp, Res Inst 14, Nanjing 211106, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Time series analysis; Data models; Bayes methods; Task analysis; Encoding; Target recognition; Combat intention recognition; long-tailed distribution; self-attention;
D O I
10.1109/ACCESS.2024.3442371
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To address the issue of model performance degradation in combat intention recognition caused by the long-tailed distribution of battlefield data and the neglect of the spatial dimension information of multivariate time series data, this paper proposes a class balanced spatio-temporal self-attention (CBSTSA) model. By incorporating spatial and temporal attention mechanisms, the model captures interdependencies among features and extracts salient information from both temporal and spatial dimensions. Furthermore, taking the long-tailed distribution of battlefield data into account, a re-weighted class balanced loss function is introduced to train the model. Experimental results show the superiority of our CBSTSA model, e.g. achieving approximately 95.67% accuracy in typical scenarios, surpassing benchmark schemes by 4-5%.
引用
收藏
页码:112074 / 112084
页数:11
相关论文
共 50 条
  • [11] STCA: an action recognition network with spatio-temporal convolution and attention
    Tian, Qiuhong
    Miao, Weilun
    Zhang, Lizao
    Yang, Ziyu
    Yu, Yang
    Zhao, Yanying
    Yao, Lan
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2025, 14 (01)
  • [12] SELF-ATTENTION NETWORKS FOR CONNECTIONIST TEMPORAL CLASSIFICATION IN SPEECH RECOGNITION
    Salazar, Julian
    Kirchhoff, Katrin
    Huang, Zhiheng
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 7115 - 7119
  • [13] Spatio-temporal segments attention for skeleton-based action recognition
    Qiu, Helei
    Hou, Biao
    Ren, Bo
    Zhang, Xiaohua
    NEUROCOMPUTING, 2023, 518 : 30 - 38
  • [14] Multiscale Temporal Self-Attention and Dynamical Graph Convolution Hybrid Network for EEG-Based Stereogram Recognition
    Shen, Lili
    Sun, Mingyang
    Li, Qunxia
    Li, Beichen
    Pan, Zhaoqing
    Lei, Jianjun
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2022, 30 : 1191 - 1202
  • [15] A Dual Pipeline With Spatio-Temporal Attention Fusion Approach for Human Activity Recognition
    Wang, Xiaodong
    Li, Ying
    Fang, Aiqing
    He, Pei
    Guo, Yangming
    IEEE SENSORS JOURNAL, 2024, 24 (15) : 25150 - 25162
  • [16] Dynamic Spatio-Temporal Graph Reasoning for VideoQA With Self-Supervised Event Recognition
    Nie, Jie
    Wang, Xin
    Hou, Runze
    Li, Guohao
    Chen, Hong
    Zhu, Wenwu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4145 - 4158
  • [17] Self-Attention based Siamese Neural Network recognition Model
    Liu, Yuxing
    Chang, Geng
    Fu, Guofeng
    Wei, Yingchao
    Lan, Jie
    Liu, Jiarui
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 721 - 724
  • [18] A Self-attention Based Model for Offline Handwritten Text Recognition
    Nam Tuan Ly
    Trung Tan Ngo
    Nakagawa, Masaki
    PATTERN RECOGNITION, ACPR 2021, PT II, 2022, 13189 : 356 - 369
  • [19] Associated Spatio-Temporal Capsule Network for Gait Recognition
    Zhao, Aite
    Dong, Junyu
    Li, Jianbo
    Qi, Lin
    Zhou, Huiyu
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 846 - 860
  • [20] Self-attention for Speech Emotion Recognition
    Tarantino, Lorenzo
    Garner, Philip N.
    Lazaridis, Alexandros
    INTERSPEECH 2019, 2019, : 2578 - 2582