A Class Balanced Spatio-Temporal Self-Attention Model for Combat Intention Recognition

被引:0
|
作者
Wang, Xuan [1 ]
Jin, Benzhou [1 ]
Jia, Mingyang [1 ]
Wu, Gang [2 ]
Zhang, Xiaofei [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 211106, Peoples R China
[2] China Elect Technol Grp Corp, Res Inst 14, Nanjing 211106, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Time series analysis; Data models; Bayes methods; Task analysis; Encoding; Target recognition; Combat intention recognition; long-tailed distribution; self-attention;
D O I
10.1109/ACCESS.2024.3442371
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To address the issue of model performance degradation in combat intention recognition caused by the long-tailed distribution of battlefield data and the neglect of the spatial dimension information of multivariate time series data, this paper proposes a class balanced spatio-temporal self-attention (CBSTSA) model. By incorporating spatial and temporal attention mechanisms, the model captures interdependencies among features and extracts salient information from both temporal and spatial dimensions. Furthermore, taking the long-tailed distribution of battlefield data into account, a re-weighted class balanced loss function is introduced to train the model. Experimental results show the superiority of our CBSTSA model, e.g. achieving approximately 95.67% accuracy in typical scenarios, surpassing benchmark schemes by 4-5%.
引用
收藏
页码:112074 / 112084
页数:11
相关论文
共 50 条
  • [1] Spatio-Temporal Action Detector with Self-Attention
    Ma, Xurui
    Luo, Zhigang
    Zhang, Xiang
    Liao, Qing
    Shen, Xingyu
    Wang, Mengzhu
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [2] Spatio-Temporal Self-Attention Network for Video Saliency Prediction
    Wang, Ziqiang
    Liu, Zhi
    Li, Gongyang
    Wang, Yang
    Zhang, Tianhong
    Xu, Lihua
    Wang, Jijun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 1161 - 1174
  • [3] Transforming spatio-temporal self-attention using action embedding for skeleton-based action recognition
    Ahmad, Tasweer
    Rizvi, Syed Tahir Hussain
    Kanwal, Neel
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 95
  • [4] STIRNet: A Spatio-Temporal Network for Air Formation Targets Intention Recognition
    Zhang, Chenhao
    Zhou, Yan
    Li, Hongquan
    Xu, Ying
    Qin, Yishuai
    Lei, Liang
    IEEE ACCESS, 2024, 12 : 44998 - 45010
  • [5] Spatio-Temporal Attention Networks for Action Recognition and Detection
    Li, Jun
    Liu, Xianglong
    Zhang, Wenxuan
    Zhang, Mingyuan
    Song, Jingkuan
    Sebe, Nicu
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (11) : 2990 - 3001
  • [6] FDSA-STG: Fully Dynamic Self-Attention Spatio-Temporal Graph Networks for Intelligent Traffic Flow Prediction
    Duan, Youxiang
    Chen, Ning
    Shen, Shigen
    Zhang, Peiying
    Qu, Youyang
    Yu, Shui
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (09) : 9250 - 9260
  • [7] SAST-GNN: A Self-Attention Based Spatio-Temporal Graph Neural Network for Traffic Prediction
    Xie, Yi
    Xiong, Yun
    Zhu, Yangyong
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT I, 2020, 12112 : 707 - +
  • [8] Spatio-Temporal Unequal Interval Correlation-Aware Self-Attention Network for Next POI Recommendation
    Li, Zheng
    Huang, Xueyuan
    Liu, Chun
    Yang, Wei
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (11)
  • [9] Recurrent Prediction With Spatio-Temporal Attention for Crowd Attribute Recognition
    Li, Qiaozhe
    Zhao, Xin
    He, Ran
    Huang, Kaiqi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (07) : 2167 - 2177
  • [10] Learning Sequence Descriptor Based on Spatio-Temporal Attention for Visual Place Recognition
    Zhao, Junqiao
    Zhang, Fenglin
    Cai, Yingfeng
    Tian, Gengxuan
    Mu, Wenjie
    Ye, Chen
    Feng, Tiantian
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (03) : 2351 - 2358