Satellite retrievals of water quality for diverse inland waters from Sentinel-2 images: An example from Zhejiang Province, China

被引:4
|
作者
Zhao, Yaqi [1 ]
He, Xianqiang [2 ,3 ]
Pan, Shuping [4 ]
Bai, Yan [2 ,5 ]
Wang, Difeng [2 ]
Li, Teng [2 ]
Gong, Fang [2 ]
Zhang, Xuan [2 ]
机构
[1] Zhejiang Univ, Ocean Coll, Zhoushan 316021, Peoples R China
[2] Minist Nat Resources, Inst Oceanog 2, State Key Lab Satellite Ocean Environm Dynam, Hangzhou 310012, Peoples R China
[3] Donghai Lab, Zhoushan 316021, Peoples R China
[4] Zhejiang Ecol & Environm Monitoring Ctr, Hangzhou 310012, Peoples R China
[5] Shanghai Jiao Tong Univ, Sch Oceanog, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Water quality; Inland water; Remote sensing; Sentinel-2; Machine learning; CLIMATE; RIVER; LAKE; VALIDATION; RESPONSES; IMPACTS; INDEX;
D O I
10.1016/j.jag.2024.104048
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Due to its advantages of high spatiotemporal resolution, long-term stable observation, and historical retrospective data, satellite remote sensing has extensive application in the dynamic monitoring of water quality in coastal and inland waters. However, constructing generic satellite inversion models for water quality indicators, especially non-optically active parameters such as nutrients, remains challenging due to the varying pollution sources in different inland waters. This study aims to address this challenge from a data-driven perspective. Based on Sentinel-2 satellite images and in situ data from 311 automatic monitoring stations in Zhejiang Province, China, a large volume of matchups between satellite-derived water spectra and in situ water quality parameter concentrations were constructed, including the permanganate index (CODMn, N=8760, from 0.08 to 9.88 mg/L), total nitrogen (TN, N=7434, from 0.01 to 9.30 mg/L), total phosphorus (TP, N=8845, from 0.001 to 0.991 mg/L), ammonia nitrogen (NH3-N, N=8642, from 0.001 to 1.980 mg/L) and water turbidity (TUB, N=7913, from 0.1 to 1994 NTU). Satellite retrieval models for the five water quality parameters were constructed utilizing the extreme gradient boosting tree algorithm (XGBoost), which can be applied to diverse inland waters. The models showed robust performance on the additional independent dataset, with correlation coefficients (r) of 0.74, 0.79, 0.84, 0.72, and 0.87, and root mean square errors (RMSEs) of 0.73 mg/L, 0.56 mg/L, 0.18 mg/L, 0.24 mg/L, and 0.29 NTU for CODMn, TN, TP, NH3-N, and TUB, respectively. Comparisons between satellite-retrieved and in situ values showed good consistency in both spatial and temporal distributions. By applying these models to inland waters in Zhejiang Province, the monthly distributions of major rivers and reservoirs with a 10 m resolution for the five water quality parameters were obtained. The patterns of the five water quality parameters across the rivers typically indicated elevated values in the downstream regions and diminished values in the upstream areas, except for those of the Yongjiang River and Cao'e River. Compared to rivers, reservoirs had good water quality. However, for some water quality parameters, the temporal variations in the average values over the whole reservoir and the values at specific sites had opposite trends. Our research provides a practical reference for the construction of satellite retrieval models for determining the water quality parameters of inland waters, as well as robust technical support for dynamic remote sensing surveillance of inland water quality.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Winter Wheat Mapping in Shandong Province of China with Multi-Temporal Sentinel-2 Images
    Feng, Yongyu
    Chen, Bingyao
    Liu, Wei
    Xue, Xiurong
    Liu, Tongqing
    Zhu, Linye
    Xing, Huaqiao
    APPLIED SCIENCES-BASEL, 2024, 14 (09):
  • [42] A novel analysis of critical water pollution in the transboundary Aras River using the Sentinel-2 satellite images and ANNs
    Osgouei, H. Fouladi
    Zarghami, M.
    Mosaferi, M.
    Karimzadeh, S.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2022, 19 (09) : 9011 - 9026
  • [43] A novel analysis of critical water pollution in the transboundary Aras River using the Sentinel-2 satellite images and ANNs
    H. Fouladi Osgouei
    M. Zarghami
    M. Mosaferi
    S. Karimzadeh
    International Journal of Environmental Science and Technology, 2022, 19 : 9011 - 9026
  • [44] Supervised conversion from Landsat-8 images to Sentinel-2 images with deep learning
    Isa, Sani M.
    Suharjito
    Kusuma, Gede Putera
    Cenggoro, Tjeng Wawan
    EUROPEAN JOURNAL OF REMOTE SENSING, 2021, 54 (01) : 182 - 208
  • [45] Synergistic retrievals of leaf area index and soil moisture from Sentinel-1 and Sentinel-2
    Quaife, T.
    Pinnington, E. M.
    Marzahn, P.
    Kaminski, T.
    Vossbeck, M.
    Timmermans, J.
    Isola, C.
    Rommen, B.
    Loew, A.
    INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2023, 14 (03) : 225 - 242
  • [46] QUANTITATIVE ASSESSMENT OF FOREST DEGRADATION AFTER FIRE USING ORTOGONALIZED SATELLITE IMAGES FROM SENTINEL-2
    Nedkov, Roumen
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2018, 71 (01): : 83 - 86
  • [47] Automatic water detection from multidimensional hierarchical clustering for Sentinel-2 images and a comparison with Level 2A processors
    Cordeiro, Mauricio C. R.
    Martinez, Jean-Michel
    Pena-Luque, Santiago
    REMOTE SENSING OF ENVIRONMENT, 2021, 253
  • [48] Water Quality Variations in the Lower Yangtze River Based on GA-RF Model From GF-1, Landsat-8, and Sentinel-2 Images
    Hu, Wentao
    Jin, Shuanggen
    Zhang, Yuanyuan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 4992 - 5004
  • [49] Coastal Water Clarity in Shenzhen: Assessment of Observations from Sentinel-2
    Zhao, Yelong
    Chen, Jinsong
    Li, Xiaoli
    Li, Hongzhong
    Zhao, Longlong
    WATER, 2023, 15 (23)
  • [50] Long-Time Water Quality Variations in the Yangtze River from Landsat-8 and Sentinel-2 Images Based on Neural Networks
    Yang, Yuanyuan
    Jin, Shuanggen
    WATER, 2023, 15 (21)