Assessment of Explainable Anomaly Detection for Monitoring of Cold Rolling Process

被引:0
|
作者
Jakubowski, Jakub [1 ]
Stanisz, Przemyslaw [1 ]
Bobek, Szymon [2 ,3 ,4 ]
Nalepa, Grzegorz J. [2 ,3 ,4 ]
机构
[1] AGH Univ Sci & Technol, Dept Appl Comp Sci, PL-30059 Krakow, Poland
[2] Jagiellonian Univ, Fac Phys Astron & Appl Comp Sci, Inst Appl Comp Sci, Ul Prof Stanislawa Lojasiewicza 11, PL-30348 Krakow, Poland
[3] Jagiellonian Univ, Jagiellonian Human Ctr AI Lab JAHCAI, Ul Prof Stanislawa Lojasiewicza 11, PL-30348 Krakow, Poland
[4] Jagiellonian Univ, Mark Kac Ctr Complex Syst Res, Ul Prof Stanislawa Lojasiewicza 11, PL-30348 Krakow, Poland
来源
COMPUTATIONAL SCIENCE, ICCS 2024, PT V | 2024年 / 14836卷
关键词
machine learning; explainable artificial intelligence; predictive maintenance;
D O I
10.1007/978-3-031-63775-9_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The detection and explanation of anomalies within the industrial context remains a difficult task, which requires the use of well-designed methods. In this study, we focus on evaluating the performance of Explainable Anomaly Detection (XAD) algorithms in the context of a complex industrial process, specifically cold rolling. We train several state-of-the-art anomaly detection algorithms on the synthetic data from the cold rolling process and optimize their hyperparameters to maximize its predictive capabilities. Then we employ various model-agnostic Explainable AI (XAI) methods to generate explanations for the abnormal observations. The explanations are evaluated using a set of XAI metrics specifically selected for the anomaly detection task in industrial setting. The results provide insights into the impact of the selection of both machine learning and XAI methods on the overall performance of the model, emphasizing the importance of interpretability in industrial applications. For the detection of anomalies in cold rolling, we found that autoencoder-based approaches outperformed other methods, with the SHAP method providing the best explanations according to the evaluation metrics used.
引用
收藏
页码:330 / 344
页数:15
相关论文
共 50 条
  • [21] Anomaly Detection with Autoencoders for Spectrum Sharing and Monitoring
    Tschimben, Stefan
    Gifford, Kevin
    2022 IEEE INTERNATIONAL WORKSHOP ON COMMUNICATIONS QUALITY AND RELIABILITY (IEEE CQR), 2022, : 37 - 42
  • [22] Bushing Anomaly Detection: An Initial Assessment
    Carrijo, Daniel
    Pinto, Murilo Marques
    Gomes, Gabriel
    Souza, Pablo
    Sepulvene, Luis
    Alves, Marcos
    Mendes, Dara
    Barra Ferreira, Priscila Maria
    do Nascimento, Denis Pedro
    Marques Lacerda, George Andre
    Pereira Alves, Mario Luiz
    Flauzino, Rogerio Andrade
    JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2022, 33 (05) : 1477 - 1488
  • [23] XAI-IoT: An Explainable AI Framework for Enhancing Anomaly Detection in IoT Systems
    Namrita Gummadi, Anna
    Napier, Jerry C.
    Abdallah, Mustafa
    IEEE ACCESS, 2024, 12 : 71024 - 71054
  • [24] Anomaly Detection in Asset Degradation Process Using Variational Autoencoder and Explanations
    Jakubowski, Jakub
    Stanisz, Przemyslaw
    Bobek, Szymon
    Nalepa, Grzegorz J.
    SENSORS, 2022, 22 (01)
  • [25] Adaptable and Explainable Predictive Maintenance: Semi-Supervised Deep Learning for Anomaly Detection and Diagnosis in Press Machine Data
    Serradilla, Oscar
    Zugasti, Ekhi
    Ramirez de Okariz, Julian
    Rodriguez, Jon
    Zurutuza, Urko
    APPLIED SCIENCES-BASEL, 2021, 11 (16):
  • [26] Anomaly Detection Strategies for Health-and-Usage Monitoring Systems in Helicopters' Transmissions
    Leoni, Jessica
    Tanelli, Mara
    Palman, Andrea
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 210
  • [27] Statistical Anomaly Detection in Human Dynamics Monitoring Using a Hierarchical Dirichlet Process Hidden Markov Model
    Fuse, Takashi
    Kamiya, Keita
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2017, 18 (11) : 3083 - 3092
  • [28] Optimization of cold rolling process recipes based on historical data
    Cuznar, Kristjan
    Glavan, Miha
    2022 IEEE 21ST MEDITERRANEAN ELECTROTECHNICAL CONFERENCE (IEEE MELECON 2022), 2022, : 1 - 6
  • [29] Anomaly detection techniques for a web defacement monitoring service
    Davanzo, G.
    Medvet, E.
    Bartoli, A.
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (10) : 12521 - 12530
  • [30] Anomaly detection and event mining in cold forming manufacturing processes
    Diego Nieves Avendano
    Daniel Caljouw
    Dirk Deschrijver
    Sofie Van Hoecke
    The International Journal of Advanced Manufacturing Technology, 2021, 115 : 837 - 852