Assessment of Explainable Anomaly Detection for Monitoring of Cold Rolling Process

被引:0
|
作者
Jakubowski, Jakub [1 ]
Stanisz, Przemyslaw [1 ]
Bobek, Szymon [2 ,3 ,4 ]
Nalepa, Grzegorz J. [2 ,3 ,4 ]
机构
[1] AGH Univ Sci & Technol, Dept Appl Comp Sci, PL-30059 Krakow, Poland
[2] Jagiellonian Univ, Fac Phys Astron & Appl Comp Sci, Inst Appl Comp Sci, Ul Prof Stanislawa Lojasiewicza 11, PL-30348 Krakow, Poland
[3] Jagiellonian Univ, Jagiellonian Human Ctr AI Lab JAHCAI, Ul Prof Stanislawa Lojasiewicza 11, PL-30348 Krakow, Poland
[4] Jagiellonian Univ, Mark Kac Ctr Complex Syst Res, Ul Prof Stanislawa Lojasiewicza 11, PL-30348 Krakow, Poland
来源
COMPUTATIONAL SCIENCE, ICCS 2024, PT V | 2024年 / 14836卷
关键词
machine learning; explainable artificial intelligence; predictive maintenance;
D O I
10.1007/978-3-031-63775-9_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The detection and explanation of anomalies within the industrial context remains a difficult task, which requires the use of well-designed methods. In this study, we focus on evaluating the performance of Explainable Anomaly Detection (XAD) algorithms in the context of a complex industrial process, specifically cold rolling. We train several state-of-the-art anomaly detection algorithms on the synthetic data from the cold rolling process and optimize their hyperparameters to maximize its predictive capabilities. Then we employ various model-agnostic Explainable AI (XAI) methods to generate explanations for the abnormal observations. The explanations are evaluated using a set of XAI metrics specifically selected for the anomaly detection task in industrial setting. The results provide insights into the impact of the selection of both machine learning and XAI methods on the overall performance of the model, emphasizing the importance of interpretability in industrial applications. For the detection of anomalies in cold rolling, we found that autoencoder-based approaches outperformed other methods, with the SHAP method providing the best explanations according to the evaluation metrics used.
引用
收藏
页码:330 / 344
页数:15
相关论文
共 50 条
  • [1] Explainable anomaly detection for Hot-rolling industrial process
    Jakubowski, Jakub
    Stanisz, Przemyslaw
    Bobek, Szymon
    Nalepa, Grzegorz J.
    2021 IEEE 8TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2021,
  • [2] A Survey on Explainable Anomaly Detection
    Li, Zhong
    Zhu, Yuxuan
    van Leeuwen, Matthijs
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (01)
  • [3] Explainable Anomaly Detection in Industrial Streams
    Jakubowski, Jakub
    Stanisz, Przemyslaw
    Bobek, Szymon
    Nalepa, Grzegorz J.
    ARTIFICIAL INTELLIGENCE-ECAI 2023 INTERNATIONAL WORKSHOPS, PT 1, XAI3, TACTIFUL, XI-ML, SEDAMI, RAAIT, AI4S, HYDRA, AI4AI, 2023, 2024, 1947 : 87 - 100
  • [4] Learned Anomaly Detection with Terahertz Radiation in Inline Process Monitoring
    Meiser, Clemens
    Wald, Anne
    Schuster, Thomas
    SENSING AND IMAGING, 2022, 23 (01):
  • [5] Learned Anomaly Detection with Terahertz Radiation in Inline Process Monitoring
    Clemens Meiser
    Anne Wald
    Thomas Schuster
    Sensing and Imaging, 2022, 23
  • [6] Explainable Anomaly Detection of Synthetic Medical IoT Traffic Using Machine Learning
    Aversano L.
    Bernardi M.L.
    Cimitile M.
    Montano D.
    Pecori R.
    Veltri L.
    SN Computer Science, 5 (5)
  • [7] SXAD: Shapely eXplainable AI-Based Anomaly Detection Using Log Data
    Alam, Kashif
    Kifayat, Kashif
    Sampedro, Gabriel Avelino
    Karovic Jr, Vincent
    Naeem, Tariq
    IEEE ACCESS, 2024, 12 : 95659 - 95672
  • [8] Automated explainable and interpretable framework for anomaly detection and human activity recognition in smart homes
    Tae Hoon Kim
    Stephen Ojo
    Moez Krichen
    Meznah A. Alamro
    Alaeddine Mihoub
    Gabriel Avelino Sampedro
    Neural Computing and Applications, 2025, 37 (16) : 9295 - 9308
  • [9] EXAD: A System for Explainable Anomaly Detection on Big Data Traces
    Song, Fei
    Diao, Yanlei
    Read, Jesse
    Stiegler, Arnaud
    Bifet, Albert
    2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 1435 - 1440
  • [10] Explainable predictive process monitoring: a user evaluation
    Williams Rizzi
    Marco Comuzzi
    Chiara Di Francescomarino
    Chiara Ghidini
    Suhwan Lee
    Fabrizio Maria Maggi
    Alexander Nolte
    Process Science, 1 (1):