Exploring the Molecular Mechanisms of Herbs in the Treatment of Hyperlipidemia Based on Network Pharmacology and Molecular Docking

被引:0
作者
Cheng, Xiao [1 ]
Sun, Geng [2 ]
Meng, Li [1 ]
Liu, Yueli [1 ]
Wen, Jiangnan [1 ]
Zhao, Xiaoli [1 ]
Cai, Wenhui [1 ]
Xin, Huawei [1 ]
Liu, Yu [2 ]
Hao, Chunxiang [1 ]
机构
[1] Linyi Univ, Sch Med, Linyi, Peoples R China
[2] Bozhou Univ, Sch Chinese Med, Bozhou, Peoples R China
基金
中国国家自然科学基金;
关键词
cancer; combination therapy; herbal medicines; hyperlipidemia; molecular docking; network pharmacology; LIPID-ACCUMULATION; STATIN USE; CANCER; BREAST; METABOLISM; EXPRESSION; MEDICINES; DISEASE; AKT;
D O I
10.1089/jmf.2024.k.0098
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Many herbs have been shown to safely and successfully treat hyperlipidemia. However, the molecular mechanisms underlying their treatment remain unclear. In this study, 103 prescriptions for the treatment of hyperlipidemia containing 146 herbs were screened. Cluster analyses identified a core prescription comprising five herbs, namely, Crataegus pinnatifida (Shan Zha), Cassiae semen (Jue Ming Zi), Alisma orientale (Sam.) Juz. (Ze Xie), Salvia miltiorrhiza (Dan Shen), and Radix Polygoni Multiflori (He Shou Wu), in combination for the treatment of hyperlipidemia. Next, 9, 62, 5, 132, and 34 potential targets for each of the core herbs and a total of 512 hyperlipidemia-related protein targets were detected. Finally, 40 targets shared by core herbs and hyperlipidemia were identified. IL6, AKT1, IL1B, PTGS2, VEGFA, PPARG, and NOS3 were the seven proteins that were found to be most important in the treatment of hyperlipidemia. Interestingly, the Kyoto Encyclopedia of Genes and Genomes pathway indicated that these targets were mainly enriched in the lipid and atherosclerosis pathway and the cancer pathway. In addition, core target proteins such as AKT1, PTGS2, and PPARG have been demonstrated to play critical roles in hyperlipidemia and pancreatic cancer. Significant affinity between bioactive chemicals and proteins involved in cancer pathways was found by molecular docking. Molecular docking results showed that AKT1, PTGS2, and PPARG exhibited good binding ability with three bioactive chemicals, including 3-beta-hydroxymethyllenetanshiquinone, danshexinkum d, and physciondiglucoside. The treatment of hyperlipidemia by herbs may be mediated through the modulation of proteins associated with the cancer pathway. This study helps to provide a theoretical basis for future combined therapy for hyperlipidemia and cancer.
引用
收藏
页码:1092 / 1105
页数:14
相关论文
共 50 条
  • [21] Potential molecular mechanisms of Ermiao san in the treatment of hyperuricemia and gout based on network pharmacology with molecular docking
    Geng, Yin-Hong
    Yan, Jia-Hui
    Han, Liang
    Chen, Zhe
    Tu, Sheng-Hao
    Zhang, Lin-Qi
    Song, Chun-Dong
    Duan, Feng-Yang
    Liu, Ya-Fei
    MEDICINE, 2022, 101 (37) : E30525
  • [22] Exploring the mechanism of Tingli Pill in the treatment of HFpEF based on network pharmacology and molecular docking
    Chi, Kuo
    Yang, Saisai
    Zhang, Yao
    Zhao, Yongfa
    Zhao, Jiahe
    Chen, Qiuhan
    Ge, Yuan
    Liu, Jing
    MEDICINE, 2024, 103 (16) : E37727
  • [23] Exploring the mechanism of astragalus membranaceus in the treatment of multiple system atrophy based on network pharmacology and molecular docking
    Yang, Ni
    Qi, Xianghua
    Hu, Jing
    Teng, Jing
    Wang, Yuangeng
    Li, Chunlin
    MEDICINE, 2023, 102 (05) : E32523
  • [24] Exploring the Potential Molecular Mechanism of Sijunzi Decoction in the Treatment of Non-Segmental Vitiligo Based on Network Pharmacology and Molecular Docking
    Du, Ziwei
    Wang, Hepeng
    Gao, Yang
    Zheng, Shumao
    Kou, Xiaoli
    Sun, Guoqiang
    Song, Jinxian
    Dong, Jingfei
    Wang, Genhui
    CLINICAL COSMETIC AND INVESTIGATIONAL DERMATOLOGY, 2023, 16 : 821 - 836
  • [25] Exploring the mechanism of 6-Methoxydihydrosanguinarine in the treatment of lung adenocarcinoma based on network pharmacology, molecular docking and experimental investigation
    Liu, Xingyun
    Ren, Yanling
    Qin, Shuanglin
    Yang, Zerui
    BMC COMPLEMENTARY MEDICINE AND THERAPIES, 2024, 24 (01)
  • [26] Exploring the Molecular Mechanism of Action of Yinchen Wuling Powder for the Treatment of Hyperlipidemia, Using Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation
    Ye, Jiahao
    Li, Lin
    Hu, Zhixi
    BIOMED RESEARCH INTERNATIONAL, 2021, 2021
  • [27] Molecular mechanisms of Schisandra chinensis in treating depression-neuropathic pain comorbidity by network pharmacology and molecular docking analysis
    Mokhtari, Tahmineh
    EL-Kenawy, Ayman EL-Meghawry
    NEUROSCIENCE, 2024, 555 : 92 - 105
  • [28] Exploring the Potential Mechanisms of Zuo Gui Pill for the Treatment of Knee Osteoarthritis Based on Network Pharmacology and Molecular Docking Techniques
    Wang, Yulin
    Zhang, Jiahao
    Liu, Junzheng
    Liu, Tun
    Zhao, Jiaxin
    Guo, Yiling
    Zhang, Xinyi
    Wang, Wei
    CURRENT PHARMACEUTICAL DESIGN, 2025,
  • [29] Mechanism of salidroside in the treatment of chronic myeloid leukemia based on the network pharmacology and molecular docking
    Chai, Yihong
    Chen, Feng
    Li, Zijian
    Yang, Panpan
    Zhou, Qi
    Liu, Wenling
    Xi, Yaming
    CLINICAL & TRANSLATIONAL ONCOLOGY, 2023, 25 (02) : 384 - 395
  • [30] Molecular mechanism of lycorine in the treatment of glioblastoma based on network pharmacology and molecular docking
    Su, Jie
    Huo, Mengmeng
    Xu, Fengnan
    Ding, Liqiong
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2024, 397 (03) : 1551 - 1559