Exploring the Molecular Mechanisms of Herbs in the Treatment of Hyperlipidemia Based on Network Pharmacology and Molecular Docking

被引:0
作者
Cheng, Xiao [1 ]
Sun, Geng [2 ]
Meng, Li [1 ]
Liu, Yueli [1 ]
Wen, Jiangnan [1 ]
Zhao, Xiaoli [1 ]
Cai, Wenhui [1 ]
Xin, Huawei [1 ]
Liu, Yu [2 ]
Hao, Chunxiang [1 ]
机构
[1] Linyi Univ, Sch Med, Linyi, Peoples R China
[2] Bozhou Univ, Sch Chinese Med, Bozhou, Peoples R China
基金
中国国家自然科学基金;
关键词
cancer; combination therapy; herbal medicines; hyperlipidemia; molecular docking; network pharmacology; LIPID-ACCUMULATION; STATIN USE; CANCER; BREAST; METABOLISM; EXPRESSION; MEDICINES; DISEASE; AKT;
D O I
10.1089/jmf.2024.k.0098
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Many herbs have been shown to safely and successfully treat hyperlipidemia. However, the molecular mechanisms underlying their treatment remain unclear. In this study, 103 prescriptions for the treatment of hyperlipidemia containing 146 herbs were screened. Cluster analyses identified a core prescription comprising five herbs, namely, Crataegus pinnatifida (Shan Zha), Cassiae semen (Jue Ming Zi), Alisma orientale (Sam.) Juz. (Ze Xie), Salvia miltiorrhiza (Dan Shen), and Radix Polygoni Multiflori (He Shou Wu), in combination for the treatment of hyperlipidemia. Next, 9, 62, 5, 132, and 34 potential targets for each of the core herbs and a total of 512 hyperlipidemia-related protein targets were detected. Finally, 40 targets shared by core herbs and hyperlipidemia were identified. IL6, AKT1, IL1B, PTGS2, VEGFA, PPARG, and NOS3 were the seven proteins that were found to be most important in the treatment of hyperlipidemia. Interestingly, the Kyoto Encyclopedia of Genes and Genomes pathway indicated that these targets were mainly enriched in the lipid and atherosclerosis pathway and the cancer pathway. In addition, core target proteins such as AKT1, PTGS2, and PPARG have been demonstrated to play critical roles in hyperlipidemia and pancreatic cancer. Significant affinity between bioactive chemicals and proteins involved in cancer pathways was found by molecular docking. Molecular docking results showed that AKT1, PTGS2, and PPARG exhibited good binding ability with three bioactive chemicals, including 3-beta-hydroxymethyllenetanshiquinone, danshexinkum d, and physciondiglucoside. The treatment of hyperlipidemia by herbs may be mediated through the modulation of proteins associated with the cancer pathway. This study helps to provide a theoretical basis for future combined therapy for hyperlipidemia and cancer.
引用
收藏
页码:1092 / 1105
页数:14
相关论文
共 50 条
  • [1] Exploring Molecular Targets and Mechanisms of Apigenin in the Treatment of Papillary Thyroid Carcinoma Based on Network Pharmacology and Molecular Docking Analysis
    Li, Dongyu
    Wang, Lei
    Jing, Yuchen
    Jiang, Bo
    Zhao, Lei
    Miao, Yuxi
    Xin, Shijie
    Ge, Chunlin
    NATURAL PRODUCT COMMUNICATIONS, 2022, 17 (10)
  • [2] Exploring the Targets and Molecular Mechanisms of Curcumin for the Treatment of Bladder Cancer Based on Network Pharmacology, Molecular Docking and Molecular Dynamics
    Li, Jun
    Feng, Shujie
    Wang, Xiong
    Zhang, Bingmei
    He, Qingmin
    MOLECULAR BIOTECHNOLOGY, 2025, 67 (05) : 2138 - 2159
  • [3] Exploring the mechanisms of magnolol in the treatment of periodontitis by integrating network pharmacology and molecular docking
    Chen, Der-Jeu
    Lai, Cheng-Hung
    BIOCELL, 2023, 47 (06) : 1317 - 1327
  • [4] Integrated network pharmacology, metabolomics and molecular docking analysis to reveal the mechanisms of quercetin in the treatment of hyperlipidemia
    Chen, Tao
    Wang, Tongtong
    Shi, Yuanxiang
    Deng, Jun
    Yan, Xiao
    Zhang, Chenbin
    Yin, Xin
    Liu, Wen
    JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2025, 252
  • [5] Exploring the mechanism of Erchen decoction in the treatment of atherosclerosis based on network pharmacology and molecular docking
    Li, Wenwen
    Zhang, Guowei
    Zhao, Zhenfeng
    Zuo, Yaoyao
    Sun, Zhenhai
    Chen, Shouqiang
    MEDICINE, 2023, 102 (46) : E35248
  • [6] Exploring the Molecular Mechanisms of Huaier on Modulating Metabolic Reprogramming of Hepatocellular Carcinoma: A Study Based on Network Pharmacology, Molecular Docking and Bioinformatics
    Wan, Yuxiang
    Jiang, Honglin
    Liu, Zeyu
    Bai, Chen
    Lian, Yanyan
    Zhang, Chunguang
    Zhang, Qiaoli
    Huang, Jinchang
    CURRENT PHARMACEUTICAL DESIGN, 2024, 30 (24) : 1894 - 1911
  • [7] Exploring the Potential Antidepressant Mechanisms of Pinellia by Using the Network Pharmacology and Molecular Docking
    Xiao, Yu-Gang
    Wu, Han-Biao
    Chen, Ji-Sheng
    Li, Xiong
    Qiu, Zhi-Kun
    METABOLIC BRAIN DISEASE, 2022, 37 (04) : 1071 - 1094
  • [8] Exploring the mechanism of curcumin in the treatment of colon cancer based on network pharmacology and molecular docking
    He, Qingmin
    Liu, Chuan
    Wang, Xiaohan
    Rong, Kang
    Zhu, Mingyang
    Duan, Liying
    Zheng, Pengyuan
    Mi, Yang
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [9] Potential molecular mechanisms of Danggui-Shaoyao-San in the treatment of melasma based on network pharmacology with molecular docking
    Huang, Yuehan
    Xu, Guo
    Zhu, Lin
    Jin, Qiao
    Chen, Tianran
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2024, 52 (10)
  • [10] Exploring the role of Xingren on COVID-19 based on network pharmacology and molecular docking
    Wang, Maoru
    Yu, Bin
    Wang, Jisheng
    Wang, Yu
    Liang, Libo
    JOURNAL OF FOOD BIOCHEMISTRY, 2022, 46 (10)