Three-dimensional numerical schemes for the segmentation of the psoas muscle in X-ray computed tomography images

被引:0
作者
Paolucci, Giulio [1 ]
Cama, Isabella [1 ]
Campi, Cristina [1 ,2 ]
Piana, Michele [1 ,2 ]
机构
[1] Univ Genoa, Dipartimento Matemat, MIDA, Via Dodecaneso 35, I-16145 Genoa, Italy
[2] IRCCS Osped Policlin San Martino, Largo Rosanna Benzi 10, I-16132 Genoa, Italy
关键词
Image segmentation; X-ray Computed Tomography (CT); Three-dimensional level set methods; Sarcopenia; LEVEL SET METHOD; SARCOPENIA; MODEL;
D O I
10.1186/s12880-024-01423-0
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The analysis of the psoas muscle in morphological and functional imaging has proved to be an accurate approach to assess sarcopenia, i.e. a systemic loss of skeletal muscle mass and function that may be correlated to multifactorial etiological aspects. The inclusion of sarcopenia assessment into a radiological workflow would need the implementation of computational pipelines for image processing that guarantee segmentation reliability and a significant degree of automation. The present study utilizes three-dimensional numerical schemes for psoas segmentation in low-dose X-ray computed tomography images. Specifically, here we focused on the level set methodology and compared the performances of two standard approaches, a classical evolution model and a three-dimension geodesic model, with the performances of an original first-order modification of this latter one. The results of this analysis show that these gradient-based schemes guarantee reliability with respect to manual segmentation and that the first-order scheme requires a computational burden that is significantly smaller than the one needed by the second-order approach.
引用
收藏
页数:14
相关论文
共 59 条
[1]   Opportunistic skeletal muscle metrics as prognostic tools in metastatic castration-resistant prostate cancer patients candidates to receive Radium-223 [J].
Bauckneht, Matteo ;
Lai, Rita ;
D'Amico, Francesca ;
Miceli, Alberto ;
Donegani, Maria Isabella ;
Campi, Cristina ;
Schenone, Daniela ;
Raffa, Stefano ;
Chiola, Silvia ;
Lanfranchi, Francesco ;
Rebuzzi, Sara Elena ;
Zanardi, Elisa ;
Cremante, Malvina ;
Marini, Cecilia ;
Fornarini, Giuseppe ;
Morbelli, Silvia ;
Piana, Michele ;
Sambuceti, Gianmario .
ANNALS OF NUCLEAR MEDICINE, 2022, 36 (04) :373-383
[2]   Spinal cord hypermetabolism extends to skeletal muscle in amyotrophic lateral sclerosis: a computational approach to [18F]-fluorodeoxyglucose PET/CT images [J].
Bauckneht, Matteo ;
Lai, Rita ;
Miceli, Alberto ;
Schenone, Daniela ;
Cossu, Vanessa ;
Donegani, Maria Isabella ;
Raffa, Stefano ;
Borra, Anna ;
Marra, Stefano ;
Campi, Cristina ;
Orengo, Annamaria ;
Massone, Anna Maria ;
Tagliafico, Alberto ;
Caponnetto, Claudia ;
Cabona, Corrado ;
Cistaro, Angelina ;
Chio, Adriano ;
Morbelli, Silvia ;
Nobili, Flavio ;
Sambuceti, Gianmario ;
Piana, Michele ;
Marini, Cecilia .
EJNMMI RESEARCH, 2020, 10 (01)
[3]   Hough Transform of Special Classes of Curves [J].
Beltrametti, M. C. ;
Massone, A. M. ;
Piana, M. .
SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (01) :391-412
[4]  
Cancer Moonshot Biobank, 2022, TCIA, DOI 10.7937/25T7-6Y12
[5]   Geodesic active contours [J].
Caselles, V ;
Kimmel, R ;
Sapiro, G .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1997, 22 (01) :61-79
[6]   A fractional order derivative based active contour model for inhomogeneous image segmentation [J].
Chen, Bo ;
Huang, Shan ;
Liang, Zhengrong ;
Chen, Wensheng ;
Pan, Binbin .
APPLIED MATHEMATICAL MODELLING, 2019, 65 :120-136
[7]  
Chindapasirt Jarin, 2015, Asian Pac J Cancer Prev, V16, P8075
[8]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[9]   A Topological Loss Function for Deep-Learning Based Image Segmentation Using Persistent Homology [J].
Clough, James R. ;
Byrne, Nicholas ;
Oksuz, Ilkay ;
Zimmer, Veronika A. ;
Schnabel, Julia A. ;
King, Andrew P. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) :8766-8778
[10]   The assessment and impact of sarcopenia in lung cancer: a systematic literature review [J].
Collins, Jemima ;
Noble, Simon ;
Chester, John ;
Coles, Bernadette ;
Byrne, Anthony .
BMJ OPEN, 2014, 4 (01)