Automated detection of large vessel occlusion using deep learning: a pivotal multicenter study and reader performance study

被引:4
作者
Kim, Jae Guk [1 ]
Ha, Sue Young [2 ]
Kang, You-Ri [3 ]
Hong, Hotak [2 ]
Kim, Dongmin [2 ]
Lee, Myungjae [2 ]
Sunwoo, Leonard [4 ]
Ryu, Wi-Sun [2 ]
Kim, Joon-Tae [3 ]
机构
[1] Daejeon Eulji Univ Hosp, Dept Neurol, Daejeon, South Korea
[2] JLK Inc, Artificial Intelligence Res Ctr, Seoul, South Korea
[3] Chonnam Natl Univ, Med Sch, Dept Neurol, Gwangju, South Korea
[4] Seoul Natl Univ, Bundang Hosp, Dept Radiol, Seongnam, Gyeonggi Do, South Korea
关键词
CT Angiography; Stroke; Thrombectomy; THROMBECTOMY; STROKE;
D O I
10.1136/jnis-2024-022254
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Background To evaluate the stand-alone efficacy and improvements in diagnostic accuracy of early-career physicians of the artificial intelligence (AI) software to detect large vessel occlusion (LVO) in CT angiography (CTA). Methods This multicenter study included 595 ischemic stroke patients from January 2021 to September 2023. Standard references and LVO locations were determined by consensus among three experts. The efficacy of the AI software was benchmarked against standard references, and its impact on the diagnostic accuracy of four residents involved in stroke care was assessed. The area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity of the software and readers with versus without AI assistance were calculated. Results Among the 595 patients (mean age 68.5 +/- 13.4 years, 56% male), 275 (46.2%) had LVO. The median time interval from the last known well time to the CTA was 46.0 hours (IQR 11.8-64.4). For LVO detection, the software demonstrated a sensitivity of 0.858 (95% CI 0.811 to 0.897) and a specificity of 0.969 (95% CI 0.943 to 0.985). In subjects whose symptom onset to imaging was within 24 hours (n=195), the software exhibited an AUROC of 0.973 (95% CI 0.939 to 0.991), a sensitivity of 0.890 (95% CI 0.817 to 0.936), and a specificity of 0.965 (95% CI 0.902 to 0.991). Reading with AI assistance improved sensitivity by 4.0% (2.17 to 5.84%) and AUROC by 0.024 (0.015 to 0.033) (all P<0.001) compared with readings without AI assistance. Conclusions The AI software demonstrated a high detection rate for LVO. In addition, the software improved diagnostic accuracy of early-career physicians in detecting LVO, streamlining stroke workflow in the emergency room.
引用
收藏
页数:6
相关论文
共 29 条
[1]   Association of Artificial Intelligence-Aided Chest Radiograph Interpretation With Reader Performance and Efficiency [J].
Ahn, Jong Seok ;
Ebrahimian, Shadi ;
McDermott, Shaunagh ;
Lee, Sanghyup ;
Naccarato, Laura ;
Di Capua, John F. ;
Wu, Markus Y. ;
Zhang, Eric W. ;
Muse, Victorine ;
Miller, Benjamin ;
Sabzalipour, Farid ;
Bizzo, Bernardo C. ;
Dreyer, Keith J. ;
Kaviani, Parisa ;
Digumarthy, Subba R. ;
Kalra, Mannudeep K. .
JAMA NETWORK OPEN, 2022, 5 (08) :E2229289
[2]   Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging [J].
Albers, G. W. ;
Marks, M. P. ;
Kemp, S. ;
Christensen, S. ;
Tsai, J. P. ;
Ortega-Gutierrez, S. ;
McTaggart, R. A. ;
Torbey, M. T. ;
Kim-Tenser, M. ;
Leslie-Mazwi, T. ;
Sarraj, A. ;
Kasner, S. E. ;
Ansari, S. A. ;
Yeatts, S. D. ;
Hamilton, S. ;
Mlynash, M. ;
Heit, J. J. ;
Zaharchuk, G. ;
Kim, S. ;
Carrozzella, J. ;
Palesch, Y. Y. ;
Demchuk, A. M. ;
Bammer, R. ;
Lavori, P. W. ;
Broderick, J. P. ;
Lansberg, M. G. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (08) :708-718
[3]   Fast Automatic Detection of Large Vessel Occlusions on CT Angiography [J].
Amukotuwa, Shalini ;
Straka, Matus ;
Dehkharghani, Seena ;
Bammer, Roland .
STROKE, 2019, 50 (12) :3431-3438
[4]   Middle cerebral artery anatomical variations and aneurysms: a retrospective study based on computed tomography angiography findings [J].
Brzegowy, P. ;
Polak, J. ;
Wnuk, J. ;
Lasocha, B. ;
Walocha, J. ;
Popiela, T. J. .
FOLIA MORPHOLOGICA, 2018, 77 (03) :434-440
[5]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[6]   Viz LVO versus Rapid LVO in detection of large vessel occlusion on CT angiography for acute stroke [J].
Delora, Adam ;
Hadjialiakbari, Christopher ;
Percenti, Eryn ;
Torres, Jordan ;
Alderazi, Yazan J. ;
Ezzeldin, Rime ;
Hassan, Ameer E. ;
Ezzeldin, Mohamad .
JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2024, 16 (06) :599-602
[7]   CT Angiography in Evaluating Large-Vessel Occlusion in Acute Anterior Circulation Ischemic Stroke: Factors Associated with Diagnostic Error in Clinical Practice [J].
Fasen, B. A. C. M. ;
Heijboer, R. J. J. ;
Hulsmans, F. -J. H. ;
Kwee, R. M. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2020, 41 (04) :607-611
[8]   Artificial intelligence software for diagnosing intracranial arterial occlusion in patients with acute ischemic stroke [J].
Fasen, Bram A. C. M. ;
Berendsen, Ralph C. M. ;
Kwee, Robert M. .
NEURORADIOLOGY, 2022, 64 (08) :1579-1583
[9]  
Giotta Lucifero Alice, 2021, Acta Biomed, V92, pe2021412, DOI 10.23750/abm.v92iS4.12116
[10]   Collateral Circulation and Outcome in Atherosclerotic Versus Cardioembolic Cerebral Large Vessel Occlusion [J].
Guglielmi, Valeria ;
LeCouffe, Natalie E. ;
Zinkstok, Sanne M. ;
Compagne, Kars C. J. ;
Eker, Reyhan ;
Treurniet, Kilian M. ;
Tolhuisen, Manon L. ;
van der Worp, H. Bart ;
Jansen, Ivo G. H. ;
van Oostenbrugge, Robert J. ;
Marquering, Henk A. ;
Dippel, Diederik W. J. ;
Emmer, Bart J. ;
Majoie, Charles B. L. M. ;
Roos, Yvo B. W. E. M. ;
Coutinho, Jonathan M. ;
van der Lugt, Aad ;
van Zwam, Wim H. ;
Boiten, Jelis ;
Vos, Jan A. ;
Mulder, Maxim J. H. L. ;
Goldhoorn, Robert-Jan B. ;
Kappelhof, Manon ;
Schonewille, Wouter J. ;
Wermer, Marieke J. H. ;
van Walderveen, Marianne A. A. ;
Staals, Julie ;
Hofmeijer, Jeannette ;
Martens, Jasper M. ;
Nijeholt, Geert J. Lycklama A. ;
Roozenbeek, Bob ;
de Bruijn, Sebastiaan F. ;
van Dijk, Lukas C. ;
Lo, Rob H. ;
van Dijk, Ewoud J. ;
Boogaarts, Hieronymus D. ;
de Kort, Paul L. M. ;
Peluso, Jo P. ;
van den Berg, Jan S. P. ;
van Hasselt, Boudewijn A. A. M. ;
Aerden, Leo A. M. ;
Dallinga, Rene J. ;
Uyttenboogaart, Maarten ;
Eshghi, Omid ;
Schreuder, Tobien H. C. M. L. ;
Heijboer, Roel J. J. ;
Keizer, Koos ;
Yo, Lonneke S. F. ;
den Hertog, Heleen M. ;
Sturm, Emiel J. C. .
STROKE, 2019, 50 (12) :3360-3368