Physiological Responses and Quality Alterations of Pea Sprouts under Salt Stress: Implications for Salt-Tolerant Mechanism

被引:0
|
作者
Guo, Juxian [1 ]
Zhan, Liqing [2 ]
Su, Xiuxiu [2 ]
Wang, Tingqin [2 ]
机构
[1] Guangdong Acad Agr Sci, Vegetable Res Inst, Guangdong Key Lab New Technol Res Vegetables, Guangzhou 510640, Peoples R China
[2] Guangdong Ocean Univ, Coll Coastal Agr Sci, Zhanjiang 524088, Peoples R China
关键词
pea sprouts; salt stress; germination rate; enzymatic activity; PLASMA-MEMBRANE; PLANTS;
D O I
10.3390/horticulturae10090966
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Pea sprouts, considered a nutritious and environmentally sustainable vegetable with significant cultivation prospects and market potential, face growth challenges due to salt stress. However, the underlying mechanisms associated with this stress have not been fully elucidated. To address this knowledge gap, we conducted a hydroponic study applying various concentrations of NaCl salt stress to pea sprouts. Systematic analysis was performed on key parameters including germination, plant height, biomass, and enzyme activity of pea sprouts under salt treatment. Our aim was to unravel the underlying mechanisms associated with the impact of salt stress on the growth of pea sprouts. Results revealed that salt treatment significantly inhibited the germination process of pea sprouts' seeds, leading to a notable decrease in plant height and sprout yield. Salt stress induced an increase in MDA content, a decrease in chlorophyll content, and elevated relative conductivity. However, a low concentration of salt treatment enhanced SOD activity, suggesting the activation of oxidative stress resistance mechanisms in pea sprouts. Moreover, salt treatment exhibited an inhibitory effect on soluble protein content while promoting soluble sugar content in pea sprouts. Additionally, low-concentration salt treatment increased the crude fiber content of pea sprouts, while high-concentration salt treatment inhibited it. In summary, this study indicates that salt stress could cause physiological damage to pea sprouts, but pea sprouts may employ metabolic strategies to adapt to the low concentration of salt stress. These findings contribute to a deeper understanding of the physiological responses of pea sprouts to salt stress and provide valuable insights for its implementation of salt-tolerant cultivation.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Metabolomics Analysis Reveals the Salt-Tolerant Mechanism in Glycine soja
    Dong-shuang Yang
    Jing Zhang
    Ming-xia Li
    Lian-xuan Shi
    Journal of Plant Growth Regulation, 2017, 36 : 460 - 471
  • [32] Metabolomics Analysis Reveals the Salt-Tolerant Mechanism in Glycine soja
    Yang, Dong-Shuang
    Zhang, Jing
    Li, Ming-xia
    Shi, Lian-xuan
    JOURNAL OF PLANT GROWTH REGULATION, 2017, 36 (02) : 460 - 471
  • [33] Changes in the plant proteome resulting from salt stress: Toward the creation of salt-tolerant crops?
    Sobhanian, Hamid
    Aghaei, Keyvan
    Komatsu, Setsuko
    JOURNAL OF PROTEOMICS, 2011, 74 (08) : 1323 - 1337
  • [34] Partitioning of carbohydrates in salt-sensitive and salt-tolerant soybean callus cultures under salinity stress and its subsequent relief
    T. Liu
    J. van Staden
    Plant Growth Regulation, 2001, 33 : 13 - 17
  • [35] Partitioning of carbohydrates in salt-sensitive and salt-tolerant soybean callus cultures under salinity stress and its subsequent relief
    Liu, T
    van Staden, J
    PLANT GROWTH REGULATION, 2001, 33 (01) : 13 - 17
  • [36] Comparative Proteomics of Salt-Tolerant and Salt-Sensitive Maize Inbred Lines to Reveal the Molecular Mechanism of Salt Tolerance
    Chen, Fenqi
    Fang, Peng
    Peng, Yunling
    Zeng, Wenjing
    Zhao, Xiaoqiang
    Ding, Yongfu
    Zhuang, Zelong
    Gao, Qiaohong
    Ren, Bin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (19)
  • [37] The influence of host genotype and salt stress on the seed endophytic community of salt-sensitive and salt-tolerant rice cultivars
    Denver I. Walitang
    Chang-Gi Kim
    Kiyoon Kim
    Yeongyeong Kang
    Young Kee Kim
    Tongmin Sa
    BMC Plant Biology, 18
  • [38] Physiological and antioxidant responses of cultivated and wild barley under salt stress
    Jabeen, Zahra
    Hussain, Nazim
    Irshad, Faiza
    Zeng, Jianbin
    Tahir, Ayesha
    Zhang, Guoping
    PLANT SOIL AND ENVIRONMENT, 2020, 66 (07) : 334 - 344
  • [39] Physiological Basis and Transcriptional Profiling of Three Salt-Tolerant Mutant Lines of Rice
    Domingo, Concha
    Lalanne, Eric
    Catala, Maria M.
    Pla, Eva
    Reig-Valiente, Juan L.
    Talon, Manuel
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [40] Physiological characterisation and fine mapping of a salt-tolerant mutant in rice (Oryza sativa)
    Deng, Ping
    Jiang, Dan
    Dong, Yanmin
    Shi, Xingyu
    Jing, Wen
    Zhang, Wenhua
    FUNCTIONAL PLANT BIOLOGY, 2015, 42 (11) : 1026 - 1035