Physiological Responses and Quality Alterations of Pea Sprouts under Salt Stress: Implications for Salt-Tolerant Mechanism

被引:0
|
作者
Guo, Juxian [1 ]
Zhan, Liqing [2 ]
Su, Xiuxiu [2 ]
Wang, Tingqin [2 ]
机构
[1] Guangdong Acad Agr Sci, Vegetable Res Inst, Guangdong Key Lab New Technol Res Vegetables, Guangzhou 510640, Peoples R China
[2] Guangdong Ocean Univ, Coll Coastal Agr Sci, Zhanjiang 524088, Peoples R China
关键词
pea sprouts; salt stress; germination rate; enzymatic activity; PLASMA-MEMBRANE; PLANTS;
D O I
10.3390/horticulturae10090966
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Pea sprouts, considered a nutritious and environmentally sustainable vegetable with significant cultivation prospects and market potential, face growth challenges due to salt stress. However, the underlying mechanisms associated with this stress have not been fully elucidated. To address this knowledge gap, we conducted a hydroponic study applying various concentrations of NaCl salt stress to pea sprouts. Systematic analysis was performed on key parameters including germination, plant height, biomass, and enzyme activity of pea sprouts under salt treatment. Our aim was to unravel the underlying mechanisms associated with the impact of salt stress on the growth of pea sprouts. Results revealed that salt treatment significantly inhibited the germination process of pea sprouts' seeds, leading to a notable decrease in plant height and sprout yield. Salt stress induced an increase in MDA content, a decrease in chlorophyll content, and elevated relative conductivity. However, a low concentration of salt treatment enhanced SOD activity, suggesting the activation of oxidative stress resistance mechanisms in pea sprouts. Moreover, salt treatment exhibited an inhibitory effect on soluble protein content while promoting soluble sugar content in pea sprouts. Additionally, low-concentration salt treatment increased the crude fiber content of pea sprouts, while high-concentration salt treatment inhibited it. In summary, this study indicates that salt stress could cause physiological damage to pea sprouts, but pea sprouts may employ metabolic strategies to adapt to the low concentration of salt stress. These findings contribute to a deeper understanding of the physiological responses of pea sprouts to salt stress and provide valuable insights for its implementation of salt-tolerant cultivation.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Soil Amendments and Slow-Release Urea Improved Growth, Physiological Characteristics, and Yield of Salt-Tolerant Rice Under Salt Stress Conditions
    Li, Rongyi
    Guo, Xiayu
    Qi, Yucheng
    Wang, Yuyuan
    Wang, Jianbo
    Zhang, Pengfei
    Cheng, Shenghai
    He, Wenli
    Zhao, Tingcheng
    Li, Yusheng
    Li, Lin
    Ji, Junchao
    He, Aibin
    Ai, Zhiyong
    PLANTS-BASEL, 2025, 14 (04):
  • [32] Evaluation of Cotton Germplasm Against Salt Stress for Development of Salt-Tolerant Genotypes
    Rehman, Abdul
    Iqbal, Muhammad
    GESUNDE PFLANZEN, 2022, 74 (04): : 947 - 960
  • [33] Effect of salt stress on the glycolysis of salt-tolerant mangrove cells, Bruguiera sexangula
    Ashihara, H.
    Suzuki, M.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2004, 40 : 72A - 72A
  • [34] Selection and mechanism exploration for salt-tolerant genes in tomato
    Kou, Xiaohong
    Chen, Xiuyu
    Mao, Cuiyu
    He, Yulong
    Feng, Yanchun
    Wu, Caie
    Xue, Zhaohui
    JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY, 2019, 94 (02): : 171 - 183
  • [35] Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media
    Sekmen, Askim Hediye
    Tuerkan, Ismail
    Takio, Susumu
    PHYSIOLOGIA PLANTARUM, 2007, 131 (03) : 399 - 411
  • [36] The isolation, identification, physiological and biochemical properties of salt-tolerant strains
    Yuan, YaShu
    Fang, Zhen
    Liu, Jun
    Zhang, Yan
    PROCEEDINGS OF THE 2015 INTERNATIONAL FORUM ON ENERGY, ENVIRONMENT SCIENCE AND MATERIALS, 2015, 40 : 450 - 455
  • [37] Evaluation of salt-tolerant genotypes of two processing tomato derived from in vitro regeneration under salt stress
    Messai, Abir
    Hannachi, Cherif
    Zid, Ezzeddine
    PROCEEDINGS OF THE XTH INTERNATIONAL SYMPOSIUM ON THE PROCESSING TOMATO, 2007, (758): : 51 - +
  • [38] Arabidopsis salt-tolerant mutant stml shows low levels of ROS accumulation under salt stress conditions
    Sakamoto, Hikaru
    Matsuda, Osamu
    Iba, Koh
    PLANT AND CELL PHYSIOLOGY, 2007, 48 : S141 - S141
  • [39] Melatonin-Mediated Regulation of Growth and Antioxidant Capacity in Salt-Tolerant Naked Oat under Salt Stress
    Gao, Wenying
    Feng, Zheng
    Bai, Qingqing
    He, Jinjin
    Wang, Yingjuan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (05)
  • [40] Assessment of early physiological and biochemical responses in chia (Salvia hispanica L.) sprouts under salt stress
    Younis, Mahmoud E.
    Rizwan, Muhammad
    Tourky, Shaimaa M. N.
    ACTA PHYSIOLOGIAE PLANTARUM, 2021, 43 (08)