Physiological Responses and Quality Alterations of Pea Sprouts under Salt Stress: Implications for Salt-Tolerant Mechanism

被引:0
|
作者
Guo, Juxian [1 ]
Zhan, Liqing [2 ]
Su, Xiuxiu [2 ]
Wang, Tingqin [2 ]
机构
[1] Guangdong Acad Agr Sci, Vegetable Res Inst, Guangdong Key Lab New Technol Res Vegetables, Guangzhou 510640, Peoples R China
[2] Guangdong Ocean Univ, Coll Coastal Agr Sci, Zhanjiang 524088, Peoples R China
关键词
pea sprouts; salt stress; germination rate; enzymatic activity; PLASMA-MEMBRANE; PLANTS;
D O I
10.3390/horticulturae10090966
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Pea sprouts, considered a nutritious and environmentally sustainable vegetable with significant cultivation prospects and market potential, face growth challenges due to salt stress. However, the underlying mechanisms associated with this stress have not been fully elucidated. To address this knowledge gap, we conducted a hydroponic study applying various concentrations of NaCl salt stress to pea sprouts. Systematic analysis was performed on key parameters including germination, plant height, biomass, and enzyme activity of pea sprouts under salt treatment. Our aim was to unravel the underlying mechanisms associated with the impact of salt stress on the growth of pea sprouts. Results revealed that salt treatment significantly inhibited the germination process of pea sprouts' seeds, leading to a notable decrease in plant height and sprout yield. Salt stress induced an increase in MDA content, a decrease in chlorophyll content, and elevated relative conductivity. However, a low concentration of salt treatment enhanced SOD activity, suggesting the activation of oxidative stress resistance mechanisms in pea sprouts. Moreover, salt treatment exhibited an inhibitory effect on soluble protein content while promoting soluble sugar content in pea sprouts. Additionally, low-concentration salt treatment increased the crude fiber content of pea sprouts, while high-concentration salt treatment inhibited it. In summary, this study indicates that salt stress could cause physiological damage to pea sprouts, but pea sprouts may employ metabolic strategies to adapt to the low concentration of salt stress. These findings contribute to a deeper understanding of the physiological responses of pea sprouts to salt stress and provide valuable insights for its implementation of salt-tolerant cultivation.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Comparative study on vegetal and physiological characteristics of different salt-tolerant plants under salt stress
    Zhejiang Forest Plant and Seed Management Center Station, Hangzhou 310020, China
    不详
    不详
    J. Zhejiang Univ. Agric. Life Sci., 2006, 4 (420-427):
  • [2] Growth and physiological response of salt-sensitive and salt-tolerant rootstocks of citrus to paclobutrazol under salt stress
    Dubey, A. K.
    Srivastav, Manish
    Singh, A. K.
    Pandey, R. N.
    INDIAN JOURNAL OF AGRICULTURAL SCIENCES, 2009, 79 (08): : 595 - 599
  • [3] Damage responses to salt stress in salt-tolerant cell line of wheat
    Tang, XX
    Jia, JF
    Zheng, GC
    ACTA BOTANICA SINICA, 1999, 41 (07): : 757 - 760
  • [4] Phenotypic responses in the root of salt-tolerant accessions of Vigna marina and Vigna luteola under salt stress
    Wang, Fanmiao
    Iki, Yurie
    Tanoi, Keitaro
    Naito, Ken
    GENETIC RESOURCES AND CROP EVOLUTION, 2024, 71 (06) : 2631 - 2640
  • [5] Change in physiological and biochemical parameters under drought stress in salt-tolerant and salt-susceptible eggplant genotypes
    Kiran, Sevinc
    Kusvuran, Sebnem
    Ozkay, Fatma
    Ellialtioglu, S. Sebnem
    TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 2019, 43 (06) : 593 - 602
  • [6] Physiological and Biochemical Responses to Salt Stress of Alfalfa Populations Selected for Salinity Tolerance and Grown in Symbiosis with Salt-Tolerant Rhizobium
    Bertrand, Annick
    Gatzke, Craig
    Bipfubusa, Marie
    Levesque, Vicky
    Chalifour, Francois P.
    Claessens, Annie
    Rocher, Solen
    Tremblay, Gaetan F.
    Beauchamp, Chantal J.
    AGRONOMY-BASEL, 2020, 10 (04):
  • [7] Physiological and transcriptional responses to salt stress in salt-tolerant and salt-sensitive soybean (Glycine max [L.] Merr.) seedlings
    Ning, Lihua
    Kan, Guizhen
    Shao, Hongbo
    Yu, Deyue
    LAND DEGRADATION & DEVELOPMENT, 2018, 29 (08) : 2707 - 2719
  • [8] Metabolic Regulation and Molecular Mechanism of Salt Stress Response in Salt-Tolerant Astragalus mongholicus
    Liu, Yuxiao
    Sheng, Jinhua
    Yang, Jiaqing
    Li, Xingcong
    APPLIED SCIENCES-BASEL, 2025, 15 (05):
  • [9] Comparative Transcriptome Analysis of Salt-Tolerant and -Sensitive Soybean Cultivars under Salt Stress
    Cheng, Ye
    Cheng, Xiangqiang
    Wei, Kai
    Wang, Yan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (18)
  • [10] Seed physiological quality and seedling growth of pea under water and salt stress
    Pereira, Isabella C.
    Catao, Hugo C. R. M.
    Caixeta, Franciele
    REVISTA BRASILEIRA DE ENGENHARIA AGRICOLA E AMBIENTAL, 2020, 24 (02): : 95 - 100