The ever-escalating demand for high-performance batteries with increased energy density and cycling capabilities necessitates extensive research in the domain of battery technology. It is safe to say that all the components of a battery: electrodes, electrolytes, binders, separators, and additives, play pivotal roles in determining battery performance. One approach to this issue that has been garnering popularity is the utilization of the supramolecular chemistry of inclusion complexes, such as cyclodextrins (CD), cucurbiturils (CB), calixarenes (CX), and crown ethers (CE). Each of these host molecules offers a unique set of advantages and disadvantages, which are generally reviewed in this paper. The main feature of these host molecules is the possession of hydrophobic cavities that can encapsulate a diverse range of guest molecules, this function enables a multitude of upgrades to different battery components, contributing to an overall enhanced battery performance. This review paper provides an up-to-date overview of the recent advancements in the application of cyclodextrins, cucurbiturils, calixarenes, and crown ethers in the field of batteries. Through this comprehensive examination, we aim to contribute to the ongoing discourse on improving battery performance and addressing the ever-growing energy storage demands.