On explicit ninth-order, two-step methods addressing <mml:msup>y"</mml:msup>=f(x,y)

被引:1
|
作者
Jerbi, Houssem [1 ]
Ben Aoun, Sondess [2 ]
Alshammari, Obaid [3 ]
Simos, Theodore E. [4 ,5 ,6 ,7 ]
Tsitouras, Ch. [8 ]
Kchaou, Mourad [3 ]
机构
[1] Univ Hail, Coll Engn, Dept Ind Engn, Hail, Saudi Arabia
[2] Univ Hail, Coll Comp Sci & Engn, Dept Comp Engn, Hail, Saudi Arabia
[3] Univ Hail, Coll Engn, Dept Elect Engn, Hail, Saudi Arabia
[4] Hangzhou Dianzi Univ, Sch Mech Engn, Hangzhou, Peoples R China
[5] Gulf Univ Sci & Technol, Ctr Appl Math & Bioinformat, West Mishref, Kuwait
[6] Ulyanovsk State Tech Univ, Lab Interdisciplinary Problems Energy Prod, Ulyanovsk, Russia
[7] Democritus Univ Thrace, Dept Civil Engn, Sect Math, Xanthi 67100, Greece
[8] Natl & Kapodistrian Univ Athens, Gen Dept, Euripus Campus, Zografos, Greece
关键词
initial value problem; mathematica; order conditions; quadruple precision; second-order; NUMEROV-TYPE METHODS; ORDER CONDITIONS; REDUCED NUMBER; HYBRID METHODS; STABLE METHODS; PHASE-LAG;
D O I
10.1002/mma.10448
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new family of ninth-order hybrid explicit Numerov-type methods, effectively utilizing only eight stages, for solving the special second-order initial value problem. After applying a number of simplifying assumptions, we arrive to a reduced set of order conditions. Then, we derive an optimal method with constant coefficients that requires one less stage than standard methods found in the literature that use nine stages at this moment. Numerical tests are conducted using quadruple precision arithmetic on several well-known problems and the superiority of the new method is clear. Finally, in Section 6, a Mathematica package is presented that implements the corresponding algorithm.
引用
收藏
页码:2517 / 2528
页数:12
相关论文
共 50 条
  • [1] Discontinuous Galerkin Methods with Optimal <mml:msup>L2</mml:msup> Accuracy for One Dimensional Linear PDEs with High Order Spatial Derivatives
    Fu, Pei
    Cheng, Yingda
    Li, Fengyan
    Xu, Yan
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (02) : 816 - 863
  • [2] EXPLICIT TWO-STEP HIGH-ACCURACY METHODS FOR y" = f(x,y)
    向开理
    张建军
    Numerical Mathematics(Theory,Methods and Applications), 1994, (02) : 172 - 179
  • [3] Ninth-order, explicit, two-step methods for second-order inhomogeneous linear IVPs
    Kovalnogov, Vladislav N.
    Simos, Theodore E.
    Tsitouras, Charalampos
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (07) : 4918 - 4926
  • [4] Order conditions for a class of two-step methods for y"=f(x,y)
    Coleman, JP
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2003, 23 (02) : 197 - 220
  • [5] Two-step hybrid collocation methods for y" = f (x, y)
    D'Ambrosio, R.
    Ferro, M.
    Paternoster, B.
    APPLIED MATHEMATICS LETTERS, 2009, 22 (07) : 1076 - 1080
  • [6] Exponentially fitted two-step hybrid methods for y" = f (x, y)
    D'Ambrosio, R.
    Esposito, E.
    Paternoster, B.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (16) : 4888 - 4897
  • [7] A continuous two-step method of order 8 with a block extension for y" = f (x, y, y′)
    Jator, S. N.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (03) : 781 - 791
  • [8] Extended explicit pseudo two-step RKN methods for oscillatory systems y″ + My = f(y)
    Jiyong Li
    Shuo Deng
    Xianfen Wang
    Numerical Algorithms, 2018, 78 : 673 - 700
  • [9] Explicit, Eighth-Order, Four-Step Methods for Solving y"=f(x,y)
    Medvedev, Maxim A.
    Simos, T. E.
    Tsitouras, Ch
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (05) : 3791 - 3807
  • [10] Extended explicit pseudo two-step RKN methods for oscillatory systems y aEuro3 + M y = f(y)
    Li, Jiyong
    Deng, Shuo
    Wang, Xianfen
    NUMERICAL ALGORITHMS, 2018, 78 (03) : 673 - 700