Evaluating artificial intelligence for medical imaging: a primer for clinicians

被引:1
作者
Keni, Shivank [1 ,2 ]
机构
[1] Univ Edinburgh, Ctr Clin Brain Sci, Edinburgh, Midlothian, Scotland
[2] Royal Infirm Edinburgh NHS Trust, Acute Med Unit, Edinburgh, Midlothian, Scotland
关键词
Artificial intelligence; Deep learning; Machine learning; Medical imaging; Radiomics; MACHINE; SEGMENTATION; CLASSIFICATION; RADIOMICS; IMAGES; ALGORITHM; ACCURACY; SYSTEM; HEALTH; CANCER;
D O I
10.12968/hmed.2024.0312
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Artificial intelligence has the potential to transform medical imaging. The effective integration of artificial intelligence into clinical practice requires a robust understanding of its capabilities and limitations. This paper begins with an overview of key clinical use cases such as detection, classification, segmentation and radiomics. It highlights foundational concepts in machine learning such as learning types and strategies, as well as the training and evaluation process. We provide a broad theoretical framework for assessing the clinical effectiveness of medical imaging artificial intelligence, including appraising internal validity and generalisability of studies, and discuss barriers to clinical translation. Finally, we highlight future directions of travel within the field including multimodal data integration, federated learning and explainability. By having an awareness of these issues, clinicians can make informed decisions about adopting artificial intelligence for medical imaging, improving patient care and clinical outcomes.
引用
收藏
页数:13
相关论文
共 50 条
[41]   Artificial Intelligence in Lung Cancer Imaging: Unfolding the Future [J].
Cellina, Michaela ;
Ce, Maurizio ;
Irmici, Giovanni ;
Ascenti, Velio ;
Khenkina, Natallia ;
Toto-Brocchi, Marco ;
Martinenghi, Carlo ;
Papa, Sergio ;
Carrafiello, Gianpaolo .
DIAGNOSTICS, 2022, 12 (11)
[42]   Artificial intelligence and machine learning for medical imaging: A technology review [J].
Barragan-Montero, Ana ;
Javaid, Umair ;
Valdes, Gilmer ;
Nguyen, Dan ;
Desbordes, Paul ;
Macq, Benoit ;
Willems, Siri ;
Vandewinckele, Liesbeth ;
Holmstrom, Mats ;
Lofman, Fredrik ;
Michiels, Steven ;
Souris, Kevin ;
Sterpin, Edmond ;
Lee, John A. .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 83 :242-256
[43]   The Evolution of Artificial Intelligence in Medical Imaging: From Computer Science to Machine and Deep Learning [J].
Avanzo, Michele ;
Stancanello, Joseph ;
Pirrone, Giovanni ;
Drigo, Annalisa ;
Retico, Alessandra .
CANCERS, 2024, 16 (21)
[44]   A Primer on the Use of Artificial Intelligence in Spine Surgery [J].
Katsuura, Yoshihiro ;
Colon, Luis F. ;
Perez, Alberto A. ;
Albert, Todd J. ;
Qureshi, Sheeraz A. .
CLINICAL SPINE SURGERY, 2021, 34 (09) :2021-321
[45]   A Primer into the Current State of Artificial Intelligence in Gastroenterology [J].
Moldoveanu, Alexandru Constantin ;
Fierbinteanu-Braticevici, Carmen .
JOURNAL OF GASTROINTESTINAL AND LIVER DISEASES, 2022, 31 (02) :244-253
[46]   Australian perspectives on artificial intelligence in medical imaging [J].
Currie, Geoffrey ;
Nelson, Tarni ;
Hewis, Johnathan ;
Chandler, Amanda ;
Spuur, Kelly ;
Nabasenja, Caroline ;
Thomas, Cate ;
Wheat, Janelle .
JOURNAL OF MEDICAL RADIATION SCIENCES, 2022, 69 (03) :282-292
[47]   A primer of artificial intelligence in medicine [J].
Greenhill, Alexandra T. ;
Edmunds, Bethany R. .
TECHNIQUES AND INNOVATIONS IN GASTROINTESTINAL ENDOSCOPY, 2020, 22 (02) :85-89
[48]   Artificial Intelligence in Veterinary Imaging: An Overview [J].
Pereira, Ana Ines ;
Franco-Goncalo, Pedro ;
Leite, Pedro ;
Ribeiro, Alexandrine ;
Alves-Pimenta, Maria Sofia ;
Colaco, Bruno ;
Loureiro, Catia ;
Goncalves, Lio ;
Filipe, Vitor ;
Ginja, Mario .
VETERINARY SCIENCES, 2023, 10 (05)
[49]   A Review of Artificial Intelligence in Breast Imaging [J].
Al-Karawi, Dhurgham ;
Al-Zaidi, Shakir ;
Helael, Khaled Ahmad ;
Obeidat, Naser ;
Mouhsen, Abdulmajeed Mounzer ;
Ajam, Tarek ;
Alshalabi, Bashar A. ;
Salman, Mohamed ;
Ahmed, Mohammed H. .
TOMOGRAPHY, 2024, 10 (05) :705-726
[50]   Artificial intelligence in skeletal metastasis imaging [J].
Dong, Xiying ;
Chen, Guilin ;
Zhu, Yuanpeng ;
Ma, Boyuan ;
Ban, Xiaojuan ;
Wu, Nan ;
Ming, Yue .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2024, 23 :157-164