Evaluating artificial intelligence for medical imaging: a primer for clinicians

被引:1
作者
Keni, Shivank [1 ,2 ]
机构
[1] Univ Edinburgh, Ctr Clin Brain Sci, Edinburgh, Midlothian, Scotland
[2] Royal Infirm Edinburgh NHS Trust, Acute Med Unit, Edinburgh, Midlothian, Scotland
关键词
Artificial intelligence; Deep learning; Machine learning; Medical imaging; Radiomics; MACHINE; SEGMENTATION; CLASSIFICATION; RADIOMICS; IMAGES; ALGORITHM; ACCURACY; SYSTEM; HEALTH; CANCER;
D O I
10.12968/hmed.2024.0312
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Artificial intelligence has the potential to transform medical imaging. The effective integration of artificial intelligence into clinical practice requires a robust understanding of its capabilities and limitations. This paper begins with an overview of key clinical use cases such as detection, classification, segmentation and radiomics. It highlights foundational concepts in machine learning such as learning types and strategies, as well as the training and evaluation process. We provide a broad theoretical framework for assessing the clinical effectiveness of medical imaging artificial intelligence, including appraising internal validity and generalisability of studies, and discuss barriers to clinical translation. Finally, we highlight future directions of travel within the field including multimodal data integration, federated learning and explainability. By having an awareness of these issues, clinicians can make informed decisions about adopting artificial intelligence for medical imaging, improving patient care and clinical outcomes.
引用
收藏
页数:13
相关论文
共 50 条
[31]   Applications of Artificial Intelligence for Pediatric Cancer Imaging [J].
Singh, Shashi B. ;
Sarrami, Amir H. ;
Gatidis, Sergios ;
Varniab, Zahra S. ;
Chaudhari, Akshay ;
Daldrup-Link, Heike E. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2024, 223 (02)
[32]   Artificial intelligence in liver imaging: methods and applications [J].
Zhang, Peng ;
Gao, Chaofei ;
Huang, Yifei ;
Chen, Xiangyi ;
Pan, Zhuoshi ;
Wang, Lan ;
Dong, Di ;
Li, Shao ;
Qi, Xiaolong .
HEPATOLOGY INTERNATIONAL, 2024, 18 (02) :422-434
[33]   Artificial Intelligence in Gastrointestinal Imaging Advances and Applications [J].
Chong, Jaron J. R. ;
Kirpalani, Anish ;
Moreland, Robert ;
Colak, Errol .
RADIOLOGIC CLINICS OF NORTH AMERICA, 2025, 63 (03) :477-490
[34]   Artificial intelligence and machine learning in oncologic imaging [J].
Kleesiek, Jens ;
Murray, Jacob M. ;
Strack, Christian ;
Prinz, Sebastian ;
Kaissis, Georgios ;
Braren, Rickmer .
PATHOLOGE, 2020, 41 (06) :649-658
[35]   Artificial intelligence and machine learning in oncologic imaging [J].
Kleesiek, Jens ;
Murray, Jacob M. ;
Kaissis, Georgios ;
Braren, Rickmer .
ONKOLOGE, 2020, 26 (01) :60-65
[36]   Artificial intelligence in medical imaging of the liver [J].
Li-Qiang Zhou ;
Jia-Yu Wang ;
Song-Yuan Yu ;
Ge-Ge Wu ;
Qi Wei ;
You-Bin Deng ;
Xing-Long Wu ;
Xin-Wu Cui ;
Christoph F Dietrich .
World Journal of Gastroenterology, 2019, (06) :672-682
[37]   Updated Primer on Generative Artificial Intelligence and Large Language Models in Medical Imaging for Medical Professionals [J].
Kim, Kiduk ;
Cho, Kyungjin ;
Jang, Ryoungwoo ;
Kyung, Sunggu ;
Lee, Soyoung ;
Ham, Sungwon ;
Choi, Edward ;
Hong, Gil-Sun ;
Kim, Namkug .
KOREAN JOURNAL OF RADIOLOGY, 2024, 25 (03) :224-242
[38]   A primer in artificial intelligence in cardiovascular medicine [J].
Benjamins, J. W. ;
Hendriks, T. ;
Knuuti, J. ;
Juarez-Orozco, L. E. ;
van der Harst, P. .
NETHERLANDS HEART JOURNAL, 2019, 27 (09) :392-402
[39]   Transforming Medical Imaging: The Role of Artificial Intelligence Integration in PACS for Enhanced Diagnostic Accuracy and Workflow Efficiency [J].
Perez-Sanpablo, Alberto I. ;
Quinzanos-Fresnedo, Jimena ;
Gutierrez-Martinez, Josefina ;
Lozano-Rodriguez, Irma G. ;
Roldan-Valadez, Ernesto .
CURRENT MEDICAL IMAGING, 2025, 21
[40]   A scoping review of interpretability and explainability concerning artificial intelligence methods in medical imaging [J].
Champendal, Melanie ;
Muller, Henning ;
Prior, John O. ;
dos Reis, Claudia Sa .
EUROPEAN JOURNAL OF RADIOLOGY, 2023, 169