Improving Public Health Policies with Indoor Air Quality Predictive Models

被引:0
作者
Posada Barrera, Ariel Isaac [1 ]
Rodriguez Peralta, Laura Margarita [1 ]
de Oliveira Nunes, Eldman [2 ]
Maia Sampaio, Paulo Nazareno [3 ]
Cuesta Astudillo, Fabian Leonardo [1 ,4 ]
机构
[1] Univ Popular Autonoma Estado Puebla UPAEP, Dept Ingn, Fac Teenol Informac Ciencia Datos FTIyCD, Puebla, Mexico
[2] Ctr Univ SENAI CIMATEC, Salvador, BA, Brazil
[3] Univ Salvador, UNIFACS, Salvador, BA, Brazil
[4] Univ Politecn Salcsiana, Cuenca, Ecuador
来源
2023 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE, CSCI 2023 | 2023年
关键词
IoT; Big Data; Machine learning; Monitoring; Sick buildings syndrome;
D O I
10.1109/CSCI62032.2023.00040
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Indoor air quality is important for public health. This study was designed to develop predictive models focusing on indoor air quality, specifically targeting levels of CO2, TVOC, PM2.5, and PM10. We implemented and trained Machine Learning Models-Regression Forest Model and Gradient-Boosted Tree Model-using a dataset from the states of Puebla and Morelos in Mexico. The dataset incorporated various environmental variables, including pollutant levels, temperature, relative humidity, population density, and ventilation characteristics, all of which were found to significantly influence the presence of indoor air contaminants. These findings are instrumental in formulating policies to mitigate poor indoor air quality. Moreover, the study suggests that it is feasible to predict when contaminants will reach harmful levels by monitoring changes in these variables.
引用
收藏
页码:221 / 226
页数:6
相关论文
共 18 条
  • [1] Indoor air quality pollutants predicting approach using unified labelling process-based multi-criteria decision making and machine learning techniques
    Baqer, Noor S.
    Albahri, A. S.
    Mohammed, Hussein A.
    Zaidan, A. A.
    Amjed, Rula A.
    Al-Bakry, Abbas M.
    Albahri, O. S.
    Alsattar, H. A.
    Alnoor, Alhamzah
    Alamoodi, A. H.
    Zaidan, B. B.
    Malik, R. Q.
    Kareem, Z. H.
    [J]. TELECOMMUNICATION SYSTEMS, 2022, 81 (04) : 591 - 613
  • [2] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [3] The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation
    Chicco, Davide
    Warrens, Matthijs J.
    Jurman, Giuseppe
    [J]. PEERJ COMPUTER SCIENCE, 2021,
  • [4] Using probabilistic sampling-based sensitivity analyses for indoor air quality modelling
    Das, Payel
    Shrubsole, Clive
    Jones, Benjamin
    Hamilton, Ian
    Chalabi, Zaid
    Davies, Michael
    Mavrogianni, Anna
    Taylor, Jonathon
    [J]. BUILDING AND ENVIRONMENT, 2014, 78 : 171 - 182
  • [5] Databot, 2023, Home-databotT-Real Data, Real Science, Real Fun!
  • [6] Dominguez Portillo J., 2023, 2023 18 IB C INF SYS, P1, DOI [10.23919/CISTI58278.2023.10212010, DOI 10.23919/CISTI58278.2023.10212010]
  • [7] Greedy function approximation: A gradient boosting machine
    Friedman, JH
    [J]. ANNALS OF STATISTICS, 2001, 29 (05) : 1189 - 1232
  • [8] Inkbird, 2023, Wi-Fi 8-in-1 Air Quality Monitor IAQM-128W
  • [9] Modeling indoor air carbon dioxide concentration using artificial neural network
    Khazaei, B.
    Shiehbeigi, A.
    Kani, A. R. Haji Molla Ali
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2019, 16 (02) : 729 - 736
  • [10] Artificial intelligence-based prediction of indoor bioaerosol concentrations from indoor air quality sensor data
    Lee, Justin Y. Y.
    Miao, Yanhao
    Chau, Ricky L. T.
    Hernandez, Mark
    Lee, Patrick K. H.
    [J]. ENVIRONMENT INTERNATIONAL, 2023, 174