End-to-End Direct Phase Retrieval From a Single-Frame Interferogram Based on Deep Learning

被引:1
|
作者
Zhang, Tianshan [1 ]
Lu, Mingfeng [1 ]
Hu, Yao [2 ]
Hao, Qun [4 ]
Wu, Jinmin [3 ]
Zhang, Nan [1 ]
Yang, Shuai [4 ]
He, Wenjie [1 ]
Zhang, Feng [1 ]
Tao, Ran [1 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing Key Lab Fract Signals & Syst, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Opt & Photon, Beijing Key Lab Precis Optoelect Measurement Instr, Beijing 100081, Peoples R China
[3] Beijing Informat Sci & Technol Univ, Sch Automat, Beijing 100101, Peoples R China
[4] Beijing Inst Technol, Sch Opt & Photon, MIIT Key Lab Complex Field Intelligent Explorat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; fringe analysis; optical interferometry; optical metrology; phase retrieval; DEMODULATION;
D O I
10.1109/TIM.2024.3418112
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the field of optical interferometry, phase retrieval is a critical step in acquiring the phase information of fringes. Various deep-learning-based methods have been proposed for phase retrieval from a single-frame interferogram. However, the existing methods still cannot obtain the unwrapped phase directly without the aid of extra steps. To truly fulfill end-to-end phase retrieval for various fringe patterns, we propose a novel method with carefully crafted network architecture and training methodology. Experimental results on simulated and actual interferograms show excellent accuracy, noise robustness, and demodulation efficiency without any further phase unwrapping or polynomial fitting required by the existing methods. Furthermore, the proposed method is compatible with non-Zernike-polynomial-phase interferograms containing phase discontinuities. These properties have qualified the proposed method for high-standard interferometric measurement for optical fabrication.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] End-to-End Deep Learning for Driver Distraction Recognition
    Koesdwiady, Arief
    Bedawi, Safaa M.
    Ou, Chaojie
    Karray, Fakhri
    IMAGE ANALYSIS AND RECOGNITION, ICIAR 2017, 2017, 10317 : 11 - 18
  • [22] An Analytic End-to-End Collaborative Deep Learning Algorithm
    Li, Sitan
    Cheah, Chien Chern
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3024 - 3029
  • [23] Detecting web attacks with end-to-end deep learning
    Pan, Yao
    Sun, Fangzhou
    Teng, Zhongwei
    White, Jules
    Schmidt, Douglas C.
    Staples, Jacob
    Krause, Lee
    JOURNAL OF INTERNET SERVICES AND APPLICATIONS, 2019, 10 (01)
  • [24] End-to-End Deep Learning of Optical Fiber Communications
    Karanov, Boris
    Chagnon, Mathieu
    Thouin, Felix
    Eriksson, Tobias A.
    Buelow, Henning
    Lavery, Domanic
    Bayvel, Polina
    Schmalen, Laurent
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (20) : 4843 - 4855
  • [25] End-to-end Multimodel Deep Learning for Malware Classification
    Snow, Elijah
    Alam, Mahbubul
    Glandon, Alexander
    Iftekharuddin, Khan
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [26] An End-to-End Deep Learning System for Hop Classification
    Castro, Pedro
    Moreira, Gladston
    Luz, Eduardo
    IEEE LATIN AMERICA TRANSACTIONS, 2022, 20 (03) : 430 - 442
  • [27] POINT CLOUD GEOMETRY SCALABLE CODING WITH A SINGLE END-TO-END DEEP LEARNING MODEL
    Guarda, Andre F. R.
    Rodrigues, Nuno M. M.
    Pereira, Fernando
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 3354 - 3358
  • [28] Deep Learning Based End-to-End Wireless Communication Systems Without Pilots
    Ye, Hao
    Li, Geoffrey Ye
    Juang, Biing-Hwang
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (03) : 702 - 714
  • [29] An End-to-End Deep Learning Image Compression Framework Based on Semantic Analysis
    Wang, Cheng
    Han, Yifei
    Wang, Weidong
    APPLIED SCIENCES-BASEL, 2019, 9 (17):
  • [30] Autonomous driving in traffic with end-to-end vision-based deep learning
    Paniego, Sergio
    Shinohara, Enrique
    Canas, Josemaria
    NEUROCOMPUTING, 2024, 594