A particle swarm optimization-based deep clustering algorithm for power load curve analysis

被引:5
作者
Wang, Li [1 ]
Yang, Yumeng [1 ]
Xu, Lili [1 ]
Ren, Ziyu [1 ]
Fan, Shurui [1 ]
Zhang, Yong [2 ]
机构
[1] Hebei Univ Technol, Sch Elect & Informat Engn, Tianjin 300401, Peoples R China
[2] Tianjin Univ Commerce, Sch Informat Engn, Tianjin 300134, Peoples R China
基金
中国国家自然科学基金;
关键词
Power load curve; Particle swarm optimization; Deep clustering algorithm; Load feature extraction; SEARCH;
D O I
10.1016/j.swevo.2024.101650
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To address the inflexibility of the convolutional autoencoder (CAE) in adjusting the network structure and the difficulty of accurately delineating complex class boundaries in power load data, a particle swarm optimization deep clustering method (DC-PSO) is proposed. First, a particle swarm optimization algorithm for automatically searching the optimal network architecture and hyperparameters of CAE (AHPSO) is proposed to obtain better reconstruction performance. Then, an end-to-end deep clustering model based on a reliable sample selection strategy is designed for the deep clustering algorithm to accurately delineate the category boundaries and further improve the clustering effect. The experimental results show that the DC-PSO algorithm exhibits high clustering accuracy and higher performance for the power load profile clustering.
引用
收藏
页数:18
相关论文
共 52 条
[1]  
Alqahtani A, 2018, IEEE IMAGE PROC, P4058, DOI 10.1109/ICIP.2018.8451506
[2]  
Bai Y., 2022, POWER SYST TECHNOL, V46, P1, DOI DOI 10.13335/J.1000-3673.PST.2021.1080
[3]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[4]  
Binh P.T.T., 2018, Int. J. Electr. Comput., V6, P4829, DOI [10.11591/ijece.v8i6.pp4829-4835, DOI 10.11591/IJECE.V8I6.PP4829-4835]
[5]  
Cai Y., 2019, J COMMUN NETW-S KOR, V12, P34, DOI [10.1504/ijaacs.2019.10017151, DOI 10.1504/IJAACS.2019.10017151]
[6]  
Chen J., 2023, P 7 PURPLE MOUNT FOR, P858, DOI [10.1007/978-981-99-0063-360, DOI 10.1007/978-981-99-0063-360]
[7]  
[陈谦 Chen Qian], 2023, [电力科学与技术学报, Journal of Electric Power Science and Technology], V38, P130
[8]   Anomaly detection of defects on concrete structures with the convolutional autoencoder [J].
Chow, J. K. ;
Su, Z. ;
Wu, J. ;
Tan, P. S. ;
Mao, X. ;
Wang, Y. H. .
ADVANCED ENGINEERING INFORMATICS, 2020, 45
[9]   An optimized model based on convolutional neural networks and orthogonal learning particle swarm optimization algorithm for plant diseases diagnosis [J].
Darwish, Ashraf ;
Ezzat, Dalia ;
Hassanien, Aboul Ella .
SWARM AND EVOLUTIONARY COMPUTATION, 2020, 52
[10]   User Behavior Analysis Based on Stacked Autoencoder and Clustering in Complex Power Grid Environment [J].
Deng, Song ;
Cai, Qingyuan ;
Zhang, Zi ;
Wu, Xindong .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) :25521-25535