Critical-Layered MoS2 for the Enhancement of Supercontinuum Generation in Photonic Crystal Fibre

被引:13
作者
Xie, Jin [1 ,2 ,3 ]
Cheng, Xu [4 ,5 ]
Xue, Guodong [1 ,2 ]
Li, Xiao [1 ,2 ]
Zhong, Ding [6 ]
Yu, Wentao [7 ]
Zuo, Yonggang [8 ]
Liu, Chang [1 ]
Lin, Kaifeng [1 ,2 ]
Liu, Can [6 ]
Pang, Meng [9 ,10 ,11 ]
Jiang, Xin [9 ,10 ,11 ]
Sun, Zhipei [12 ]
Kang, Zhe [13 ]
Hong, Hao [1 ,14 ,15 ]
Liu, Kaihui [1 ,16 ]
Liu, Zhongfan [3 ,17 ]
机构
[1] Peking Univ, Frontiers Sci Ctr Nanooptoelect, Sch Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Peking Univ, Acad Adv Interdisciplinary Studies, Beijing 100871, Peoples R China
[3] Beijing Graphene Inst BGI, Beijing 100095, Peoples R China
[4] Ecole Polytech Fed Lausanne EPFL, Grp Fibre Opt, CH-1015 Lausanne, Switzerland
[5] Univ Appl Sci Western Switzerland, Haute Ecole ARC Ingn, CH-2610 St Imier, Switzerland
[6] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China
[7] Nanjing Univ Sci & Technol, Inst Interdisciplinary Phys Sci, Sch Phys, Nanjing 210094, Peoples R China
[8] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Kunming 650093, Peoples R China
[9] Chinese Acad Sci, Innovat & Integrat Ctr New Laser Technol, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
[10] Shanghai Inst Opt & Fine Mech, Russell Ctr Adv Lightwave Sci, Hangzhou 311421, Peoples R China
[11] Hangzhou Inst Opt & Fine Mech, Hangzhou 311421, Peoples R China
[12] Aalto Univ, QTF Ctr Excellence, Dept Elect & Nanoengn, Espoo 02150, Finland
[13] Zhejiang Univ, Coll Opt Sci & Engn, Natl Engn Res Ctr Opt Instruments, Ctr Opt & Electromagnet Res, Hangzhou 310058, Peoples R China
[14] Peking Univ, Interdisciplinary Inst Light Element Quantum Mat, Beijing 100871, Peoples R China
[15] Peking Univ, Res Ctr Light Element Adv Mat, Beijing 100871, Peoples R China
[16] Chinese Acad Sci, Inst Phys, Songshan Lake Mat Lab, Dongguan 523808, Peoples R China
[17] Peking Univ, Coll Chem & Mol Engn, Ctr Nanochem, Beijing 100871, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
2D materials; nonlinear optics; optical fiber; supercontinuum generation; HEXAGONAL BORON-NITRIDE; GRAPHENE;
D O I
10.1002/adma.202403696
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Supercontinuum generation (SCG) from silica-based photonic crystal fibers (PCFs) is of highly technological significance from microscopy to metrology, but has been hindered by silica's relatively low intrinsic optical nonlinearity. The prevailing approaches of filling PCF with nonlinear gases or liquids can endow fibre with enhanced optical nonlinearity and boosted SCG efficiency, yet these hybrids are easily plagued by fusion complexity, environmental incompatibility or transmission mode instability. Here this work presents a strategy of embedding solid-state 2D MoS(2 )atomic layers into the air-holes of PCF to efficiently enhance SCG. This work demonstrates a 4.8 times enhancement of the nonlinear coefficient and a 70% reduction of the threshold power for SCG with one octave spanning in the MoS2-PCF hybrid. Furthermore, this work finds that the SCG enhancement is highly layer-dependent, which only manifests for a real 2D regime within the thickness of five atomic layers. Theoretical calculations reveal that the critical thickness arises from the trade-off among the layer-dependent enhancement of the nonlinear coefficient, leakage of fundamental mode and redshift of zero-dispersion wavelength. This work provides significant advances toward efficient SCG, and highlights the importance of matching an appropriate atomic layer number in the design of functional 2D material optical fibers.
引用
收藏
页数:9
相关论文
共 49 条
[1]  
Agrawal GP, 2019, Nonlinear Fiber Optics, V6th
[2]  
Alfano R. R., 2022, The Supercontinuum Laser Source, V4th
[3]   Nonlinear Optics with 2D Layered Materials [J].
Autere, Anton ;
Jussila, Henri ;
Dai, Yunyun ;
Wang, Yadong ;
Lipsanen, Harri ;
Sun, Zhipei .
ADVANCED MATERIALS, 2018, 30 (24)
[4]   Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers [J].
Bao, Qiaoliang ;
Zhang, Han ;
Wang, Yu ;
Ni, Zhenhua ;
Yan, Yongli ;
Shen, Ze Xiang ;
Loh, Kian Ping ;
Tang, Ding Yuan .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (19) :3077-3083
[5]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[6]   Hexagonal boron nitride is an indirect bandgap semiconductor [J].
Cassabois, G. ;
Valvin, P. ;
Gil, B. .
NATURE PHOTONICS, 2016, 10 (04) :262-+
[7]   Hybrid soliton dynamics in liquid-core fibres [J].
Chemnitz, Mario ;
Gebhardt, Martin ;
Gaida, Christian ;
Stutzki, Fabian ;
Kobelke, Jens ;
Limpert, Jens ;
Tuennermann, Andreas ;
Schmidt, Markus A. .
NATURE COMMUNICATIONS, 2017, 8
[8]   Silica optical fiber integrated with two-dimensional materials: towards opto-electro-mechanical technology [J].
Chen, Jin-hui ;
Xiong, Yi-feng ;
Xu, Fei ;
Lu, Yan-qing .
LIGHT-SCIENCE & APPLICATIONS, 2021, 10 (01)
[9]   Graphene photonic crystal fibre with strong and tunable light-matter interaction [J].
Chen, Ke ;
Zhou, Xu ;
Cheng, Xu ;
Qiao, Ruixi ;
Cheng, Yi ;
Liu, Can ;
Xie, Yadian ;
Yu, Wentao ;
Yao, Fengrui ;
Sun, Zhipei ;
Wang, Feng ;
Liu, Kaihui ;
Liu, Zhongfan .
NATURE PHOTONICS, 2019, 13 (11) :754-+
[10]   Generation and photonic guidance of multi-octave optical-frequency combs [J].
Couny, F. ;
Benabid, F. ;
Roberts, P. J. ;
Light, P. S. ;
Raymer, M. G. .
SCIENCE, 2007, 318 (5853) :1118-1121