Study of the Berezinskii-Kosterlitz-Thouless transition: an unsupervised machine learning approach

被引:2
作者
Haldar, Sumit [1 ]
Rahaman, S. K. Saniur [1 ]
Kumar, Manoranjan [1 ]
机构
[1] S N Bose Natl Ctr Basic Sci, J D Block,Sect 3, Kolkata 700106, India
关键词
estimation of phase transitions; principal component analysis; machine learning; Berezinskii-Kosterlitz-Thouless transition; XY and XXZ models; antiferromagnetic triangular lattice; ferromagnetic square lattice; HEISENBERG-ANTIFERROMAGNET; PHASE-TRANSITIONS; TRIANGULAR LATTICE; FERROMAGNETISM;
D O I
10.1088/1361-648X/ad5d35
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Berezinskii-Kosterlitz-Thouless (BKT) transition in magnetic systems is an intriguing phenomenon, and estimating the BKT transition temperature is a long-standing problem. In this work, we explore anisotropic classical Heisenberg XY and XXZ models with ferromagnetic exchange on a square lattice and antiferromagnetic exchange on a triangular lattice using an unsupervised machine learning approach called principal component analysis (PCA). The earlier PCA studies of the BKT transition temperature ( TBKT ) using the vorticities as input fail to give any conclusive results, whereas, in this work, we show that the proper analysis of the first principal component-temperature curve can estimate TBKT which is consistent with the existing literature. This analysis works well for the anisotropic classical Heisenberg with a ferromagnetic exchange on a square lattice and for frustrated antiferromagnetic exchange on a triangular lattice. The classical anisotropic Heisenberg antiferromagnetic model on the triangular lattice has two close transitions: the TBKT and Ising-like phase transition for chirality at Tc , and it is difficult to separate these transition points. It is also noted that using the PCA method and manipulation of their first principal component not only makes the separation of transition points possible but also determines transition temperature.
引用
收藏
页数:9
相关论文
共 68 条
  • [21] Eskov V M., 2019, BIOPHYSICS, V64, P293, DOI [10.1134/S0006350919020064, DOI 10.1134/S0006350919020064]
  • [22] Supervised machine learning for the detection of troll profiles in twitter social network: application to a real case of cyberbullying
    Galan-Garcia, Patxi
    de la Puerta, Jose Gaviria
    Gomez, Carlos Laorden
    Santos, Igor
    Bringas, Pablo Garcia
    [J]. LOGIC JOURNAL OF THE IGPL, 2016, 24 (01) : 42 - 53
  • [23] Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
  • [24] Deep learning for visual understanding: A review
    Guo, Yanming
    Liu, Yu
    Oerlemans, Ard
    Lao, Songyang
    Wu, Song
    Lew, Michael S.
    [J]. NEUROCOMPUTING, 2016, 187 : 27 - 48
  • [25] The two-dimensional XY model at the transition temperature:: a high-precision Monte Carlo study
    Hasenbusch, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (26): : 5869 - 5883
  • [26] PHASE-TRANSITION OF QUASI-2 DIMENSIONAL PLANAR SYSTEM
    HIKAMI, S
    TSUNETO, T
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1980, 63 (02): : 387 - 401
  • [27] Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination
    Hu, Wenjian
    Singh, Rajiv R. P.
    Scalettar, Richard T.
    [J]. PHYSICAL REVIEW E, 2017, 95 (06)
  • [28] Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
    Huang, Bevin
    Clark, Genevieve
    Navarro-Moratalla, Efren
    Klein, Dahlia R.
    Cheng, Ran
    Seyler, Kyle L.
    Zhong, Ding
    Schmidgall, Emma
    McGuire, Michael A.
    Cobden, David H.
    Yao, Wang
    Xiao, Di
    Jarillo-Herrero, Pablo
    Xu, Xiaodong
    [J]. NATURE, 2017, 546 (7657) : 270 - +
  • [29] Depression detection from social network data using machine learning techniques
    Islam, Md. Rafiqul
    Kabir, Muhammad Ashad
    Ahmed, Ashir
    Kamal, Abu Raihan M.
    Wang, Hua
    Ulhaq, Anwaar
    [J]. HEALTH INFORMATION SCIENCE AND SYSTEMS, 2018, 6
  • [30] Jolliffe I., 2005, Principal Component Analysis, DOI 10.1002/0470013192.bsa501