Study of the Berezinskii-Kosterlitz-Thouless transition: an unsupervised machine learning approach

被引:2
作者
Haldar, Sumit [1 ]
Rahaman, S. K. Saniur [1 ]
Kumar, Manoranjan [1 ]
机构
[1] S N Bose Natl Ctr Basic Sci, J D Block,Sect 3, Kolkata 700106, India
关键词
estimation of phase transitions; principal component analysis; machine learning; Berezinskii-Kosterlitz-Thouless transition; XY and XXZ models; antiferromagnetic triangular lattice; ferromagnetic square lattice; HEISENBERG-ANTIFERROMAGNET; PHASE-TRANSITIONS; TRIANGULAR LATTICE; FERROMAGNETISM;
D O I
10.1088/1361-648X/ad5d35
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Berezinskii-Kosterlitz-Thouless (BKT) transition in magnetic systems is an intriguing phenomenon, and estimating the BKT transition temperature is a long-standing problem. In this work, we explore anisotropic classical Heisenberg XY and XXZ models with ferromagnetic exchange on a square lattice and antiferromagnetic exchange on a triangular lattice using an unsupervised machine learning approach called principal component analysis (PCA). The earlier PCA studies of the BKT transition temperature ( TBKT ) using the vorticities as input fail to give any conclusive results, whereas, in this work, we show that the proper analysis of the first principal component-temperature curve can estimate TBKT which is consistent with the existing literature. This analysis works well for the anisotropic classical Heisenberg with a ferromagnetic exchange on a square lattice and for frustrated antiferromagnetic exchange on a triangular lattice. The classical anisotropic Heisenberg antiferromagnetic model on the triangular lattice has two close transitions: the TBKT and Ising-like phase transition for chirality at Tc , and it is difficult to separate these transition points. It is also noted that using the PCA method and manipulation of their first principal component not only makes the separation of transition points possible but also determines transition temperature.
引用
收藏
页数:9
相关论文
共 68 条
  • [1] Machine Learning in High Energy Physics Community White Paper
    Albertsson, Kim
    Altoe, Piero
    Anderson, Dustin
    Andrews, Michael
    Espinosa, Juan Pedro Araque
    Aurisano, Adam
    Basara, Laurent
    Bevan, Adrian
    Bhimji, Wahid
    Bonacorsi, Daniele
    Calafiura, Paolo
    Campanelli, Mario
    Capps, Louis
    Carminati, Federico
    Carrazza, Stefano
    Childers, Taylor
    Coniavitis, Elias
    Cranmer, Kyle
    David, Claire
    Davis, Douglas
    Duarte, Javier
    Erdmann, Martin
    Eschle, Jonas
    Farbin, Amir
    Feickert, Matthew
    Castro, Nuno Filipe
    Fitzpatrick, Conor
    Floris, Michele
    Forti, Alessandra
    Garra-Tico, Jordi
    Gemmler, Jochen
    Girone, Maria
    Glaysher, Paul
    Gleyzer, Sergei
    Gligorov, Vladimir
    Golling, Tobias
    Graw, Jonas
    Gray, Lindsey
    Greenwood, Dick
    Hacker, Thomas
    Harvey, John
    Hegner, Benedikt
    Heinrich, Lukas
    Hooberman, Ben
    Junggeburth, Johannes
    Kagan, Michael
    Kane, Meghan
    Kanishchev, Konstantin
    Karpinski, Przemyslaw
    Kassabov, Zahari
    [J]. 18TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2017), 2018, 1085
  • [2] Differentiable biology: using deep learning for biophysics-based and data-driven modeling of molecular mechanisms
    AlQuraishi, Mohammed
    Sorger, Peter K.
    [J]. NATURE METHODS, 2021, 18 (10) : 1169 - 1180
  • [3] Machine learning for many-body physics: The case of the Anderson impurity model
    Arsenault, Louis-Francois
    Lopez-Bezanilla, Alejandro
    von Lilienfeld, O. Anatole
    Millis, Andrew J.
    [J]. PHYSICAL REVIEW B, 2014, 90 (15)
  • [4] Broken-Symmetry Ground States of the Heisenberg Model on the Pyrochlore Lattice
    Astrakhantsev, Nikita
    Westerhout, Tom
    Tiwari, Apoorv
    Choo, Kenny
    Chen, Ao
    Fischer, Mark H.
    Carleo, Giuseppe
    Neupert, Titus
    [J]. PHYSICAL REVIEW X, 2021, 11 (04)
  • [5] Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration
    Bachtis, Dimitrios
    Aarts, Gert
    Lucini, Biagio
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (01):
  • [6] Parameterized neural networks for high-energy physics
    Baldi, Pierre
    Cranmer, Kyle
    Faucett, Taylor
    Sadowski, Peter
    Whiteson, Daniel
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2016, 76 (05):
  • [7] Machine learning vortices at the Kosterlitz-Thouless transition
    Beach, Matthew J. S.
    Golubeva, Anna
    Melko, Roger G.
    [J]. PHYSICAL REVIEW B, 2018, 97 (04)
  • [8] BEREZINSKII VL, 1971, SOV PHYS JETP-USSR, V32, P493
  • [9] Bishop C. M., 2006, J. Electronic Imaging, DOI DOI 10.1117/1.2819119
  • [10] Business data mining - a machine learning perspective
    Bose, I
    Mahapatra, RK
    [J]. INFORMATION & MANAGEMENT, 2001, 39 (03) : 211 - 225