Burned Area and Burn Severity Mapping With a Transformer-Based Change Detection Model

被引:3
作者
Han, Yuxin [1 ,2 ,3 ]
Zheng, Change [1 ,2 ,3 ]
Liu, Xiaodong [1 ,2 ,3 ]
Tian, Ye [1 ,2 ,3 ,4 ]
Dong, Zixun [1 ,2 ,3 ]
机构
[1] Beijing Forestry Univ, Sch Technol, Beijing 100083, Peoples R China
[2] State Key Lab Efficient Prod Forest Resources, Beijing 100083, Peoples R China
[3] Natl Forestry & Grassland Adm Forestry Equipment &, Key Lab, Beijing 100083, Peoples R China
[4] Beijing Forestry Univ, Sch Ecol & Nat Conservat, Beijing 100083, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Vegetation mapping; Forestry; Transformers; Feature extraction; Accuracy; Remote sensing; Indexes; Burned area; burn severity; change detection; deep learning (DL); SPECTRAL INDEXES; VEGETATION; RECOVERY; VERSION;
D O I
10.1109/JSTARS.2024.3435857
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Forest fires are significant disturbances to ecosystems, necessitating accurate mapping of burned areas and assessment of burn severity. First, we reconstruct a dataset whose label uses a more flexible classification method from Landsat imagery and establish auxiliary environmental datasets for fire-affected regions. Leveraging vegetation change prefire and postfire, we propose a transformer-based change detection model that integrates remote sensing and environmental information effectively. We introduce a multilevel feature fusion mechanism to address spatial resolution degradation in burn severity estimation. Experimental results show our model closely approximates evaluation dataset labels. For burned area segmentation, our method achieves the highest F1 (0.897) and mIoU of 0.781. For burn severity estimation, our method also achieves the highest mIoU (0.851). Incorporating auxiliary features improves performance by nearly 30%, while the multilevel feature fusion mechanism reduces resolution degradation by 9.6%.
引用
收藏
页码:13866 / 13880
页数:15
相关论文
共 51 条
  • [1] Abatzoglou JT, 2017, INT J WILDLAND FIRE, V26, P269, DOI [10.1071/WF16165, 10.1071/wf16165]
  • [2] Normalized Burn Ratio Plus (NBR plus ): A New Index for Sentinel-2 Imagery
    Alcaras, Emanuele
    Costantino, Domenica
    Guastaferro, Francesca
    Parente, Claudio
    Pepe, Massimiliano
    [J]. REMOTE SENSING, 2022, 14 (07)
  • [3] Baker C., 2018, REGIONALLY ADAPTED M
  • [4] Baker C., 2020, REGIONALLY ADAPTED M
  • [5] A TRANSFORMER-BASED SIAMESE NETWORK FOR CHANGE DETECTION
    Bandara, Wele Gedara Chaminda
    Patel, Vishal M.
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 207 - 210
  • [6] MapFormer: Boosting Change Detection by Using Pre-change Information
    Bernhard, Maximilian
    Strauss, Niklas
    Schubert, Matthias
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 16791 - 16800
  • [7] A monitoring toolkit for banksia woodlands: comparison of different scale methods to measure recovery of vegetation after fire
    Brundrett, Mark
    van Dongen, Ricky
    Huntley, Bart
    Tay, Natasha
    Longman, Vanda
    [J]. REMOTE SENSING IN ECOLOGY AND CONSERVATION, 2019, 5 (01) : 33 - 54
  • [8] Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709
  • [9] Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest
    Chen, Xuexia
    Vogelmann, James E.
    Rollins, Matthew
    Ohlen, Donald
    Key, Carl H.
    Yang, Limin
    Huang, Chengquan
    Shi, Hua
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2011, 32 (23) : 7905 - 7927
  • [10] Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination
    Chuvieco, E
    Martín, MP
    Palacios, A
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (23) : 5103 - 5110