共 50 条
Efficient pathways for photogenerated charge transfer induced by Co dopants in WO3/TiO2 nanorod arrays
被引:2
作者:
Sha, Simiao
[1
]
Yu, Zhongrui
[1
,2
]
Li, Yi
[2
]
Xu, Hongtao
[3
]
Dai, Liming
[4
,5
]
Cairney, Julie M.
[6
]
Yang, Weiguang
[1
]
Li, Ying
[1
]
Prucnal, Slawomir
[2
]
Li, Sean
[7
,8
]
Liu, Bin
[1
]
Li, Wenxian
[4
,5
,7
,8
]
机构:
[1] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
[2] Helmholtz Zentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, POB 510119, D-01314 Dresden, Germany
[3] Fudan Univ, Dept Phys, Fudan Nanofabricat Lab, Shanghai 200433, Peoples R China
[4] Univ New South Wales, Sch Chem Engn, Sydney, NSW 2052, Australia
[5] Univ New South Wales, Australian Res Council, Ctr Excellence Carbon Sci & Innovat, Sydney, NSW 2052, Australia
[6] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
[7] Univ New South Wales, Sch Mat Sci & Engn, Kensington, NSW 2052, Australia
[8] Univ New South Wales, UNSW Mat & Mfg Futures Inst, Kensington, NSW 2052, Australia
来源:
基金:
澳大利亚研究理事会;
关键词:
Co doping;
Photoelectrochemical catalytic water splitting;
WO3;
TiO2 nanorod arrays;
DOPED TUNGSTEN-OXIDE;
NANOWIRE ARRAY;
PHOTOANODE;
WO3;
PERFORMANCE;
HETEROSTRUCTURE;
HETEROJUNCTION;
FABRICATION;
SEPARATION;
OXIDATION;
D O I:
10.1016/j.actamat.2024.120389
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
Modifying the energy band structure in heterostructured photocatalysts enhances charge separation efficiency and improves photoelectrochemical (PEC) performance by decreasing the charge transfer barrier. In this study, cobalt doping into WO3/TiO2 core/shell heterojunction nanorod arrays introduces versatile valence states of cobalt altering the oxygen coordination environment around W atoms in WO3, resulting in an increase in W5+ ions and oxygen vacancy defects in WO3 lattice, facilitating the water splitting reaction. Photogenerated electrons transfer easily from the WO3:Co shell to the TiO2 core due to the lower conduction band minimum (CBM) of WO3:Co shell. Moreover, photogenerated holes transfer from the TiO2 core to the WO3:Co shell efficiently due to the higher valence band maximum (VBM) of TiO2 core. The heterostructure has a high photogenerated carrier density (9.89 x 10(18) cm(-3)), improving photoconversion efficiency (2.55 mA cm(-2) at 1.23 V vs. RHE) and reducing charge recombination rates (6.51 x 10(-4) s(-1)). Co doping increases the -OH bond on WO3/TiO2 surface, improves its hydrophilicity, and is more conducive to the reaction in aqueous electrolyte. Additionally, the nanorod array structure facilitates PEC reaction kinetics by providing open spaces for mass exchange. This work proposes a feasible strategy for improving photogenerated charge transport and enhancing PEC by combining regulation of the band structure of WO3/TiO2 heterostructures with morphology design.
引用
收藏
页数:12
相关论文