Distance antimagic labeling of circulant graphs

被引:0
作者
Sy, Syafrizal [1 ]
Simanjuntak, Rinovia [2 ,6 ]
Nadeak, Tamaro [3 ]
Sugeng, Kiki Ariyanti [4 ,6 ]
Tulus, Tulus [5 ]
机构
[1] Univ Andalas, Dept Math & Data Sci, Padang, Indonesia
[2] Inst Teknol Bandung, Combinatorial Math Res Grp, Bandung, Indonesia
[3] Inst Teknol Sumatera, Dept Data Sci, Lampung, Indonesia
[4] Univ Indonesia, Dept Math, Depok, Indonesia
[5] Univ Sumatera Utara, Dept Math, Medan, Indonesia
[6] Ctr Res Collaborat Graph Theory & Combinator, Bandung, Indonesia
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 08期
关键词
graph labeling; antimagic labeling; distance antimagic labeling; circulant graph; UNIQUENESS;
D O I
10.3934/math.20241028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A distance antimagic labeling of graph G = ( V , E ) of order n is a bijection f : V ( G ) -> { 1 , 2 , ... , n } with the property that any two distinct vertices x and y satisfy omega ( x ) # omega ( y ), where omega ( x ) denotes the open neighborhood sum Z a is an element of N ( x ) f ( a ) of a vertex x . In 2013, Kamatchi and Arumugam conjectured that a graph admits a distance antimagic labeling if and only if it contains no two vertices with the same open neighborhood. A circulant graph C ( n ; S ) is a Cayley graph with order n and generating set S , whose adjacency matrix is circulant. This paper provides partial evidence for the conjecture above by presenting distance antimagic labeling for some circulant graphs. In particular, we completely characterized distance antimagic circulant graphs with one generator and distance antimagic circulant graphs C ( n ; { 1 , k } ) with odd n .
引用
收藏
页码:21177 / 21188
页数:12
相关论文
共 21 条
  • [1] ON THE UNIQUENESS OF D-VERTEX MAGIC CONSTANT
    Arumugam, S.
    Kamatchi, N.
    Vijayakumar, G. R.
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (02) : 279 - 286
  • [2] Arumugam S, 2011, J INDONES MATH SOC, P11
  • [3] CIRCULANTS AND THEIR CONNECTIVITIES
    BOESCH, F
    TINDELL, R
    [J]. JOURNAL OF GRAPH THEORY, 1984, 8 (04) : 487 - 499
  • [4] Distance magic circulant graphs
    Cichacz, Sylwia
    Froncek, Dalibor
    [J]. DISCRETE MATHEMATICS, 2016, 339 (01) : 84 - 94
  • [5] Gallian J. A., 2023, Electron. J. Combin., V26, P1, DOI [10.37236/27, DOI 10.37236/27]
  • [6] Some distance magic graphs
    Godinho, Aloysius
    Singh, T.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2018, 15 (01) : 1 - 6
  • [7] Kamatchi N., 2013, J. Combinat. Math. Combinat. Comput., V64, P61
  • [8] Kamatchi N., 2017, Theoretical computer science and discrete mathematics, V10398, P113, DOI DOI 10.1007/978-3-319-64419-6
  • [9] On isomorphisms of finite Cayley graphs - a survey
    Li, CH
    [J]. DISCRETE MATHEMATICS, 2002, 256 (1-2) : 301 - 334
  • [10] Approximate results for rainbow labelings
    Llado, Anna
    Miller, Mirka
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2017, 74 (01) : 11 - 21