共 63 条
Ultra-Short-Term Photovoltaic Power Prediction by NRGA-BiLSTM Considering Seasonality and Periodicity of Data
被引:2
作者:

Wu, Hong
论文数: 0 引用数: 0
h-index: 0
机构:
Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650504, Peoples R China Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650504, Peoples R China

Liu, Haipeng
论文数: 0 引用数: 0
h-index: 0
机构:
Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650504, Peoples R China Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650504, Peoples R China

Jin, Huaiping
论文数: 0 引用数: 0
h-index: 0
机构:
Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650504, Peoples R China Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650504, Peoples R China

He, Yanping
论文数: 0 引用数: 0
h-index: 0
机构:
Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650504, Peoples R China Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650504, Peoples R China
机构:
[1] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650504, Peoples R China
来源:
基金:
中国国家自然科学基金;
关键词:
photovoltaic power prediction;
fuzzy C-means clustering;
seasonal decomposition;
Newton-Raphson formula;
attention mechanism;
bidirectional long short-term memory network;
DECOMPOSITION;
REGRESSION;
MULTISTEP;
D O I:
10.3390/en17184739
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
Photovoltaic (PV) power generation is highly stochastic and intermittent, which poses a challenge to the planning and operation of existing power systems. To enhance the accuracy of PV power prediction and ensure the safe operation of the power system, a novel approach based on seasonal division and a periodic attention mechanism (PAM) for PV power prediction is proposed. First, the dataset is divided into three components of trend, period, and residual under fuzzy c-means clustering (FCM) and the seasonal decomposition (SD) method according to four seasons. Three independent bidirectional long short-term memory (BiLTSM) networks are constructed for these subsequences. Then, the network is optimized using the improved Newton-Raphson genetic algorithm (NRGA), and the innovative PAM is added to focus on the periodic characteristics of the data. Finally, the results of each component are summarized to obtain the final prediction results. A case study of the Australian DKASC Alice Spring PV power plant dataset demonstrates the performance of the proposed approach. Compared with other paper models, the MAE, RMSE, and MAPE performance evaluation indexes show that the proposed approach has excellent performance in predicting output power accuracy and stability.
引用
收藏
页数:19
相关论文
共 63 条
- [51] A satellite image data based ultra-short-term solar PV power forecasting method considering cloud information from neighboring plant[J]. ENERGY, 2022, 238Wang, Fei论文数: 0 引用数: 0 h-index: 0机构: North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R China North China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, Beijing 102206, Peoples R China North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R ChinaLu, Xiaoxing论文数: 0 引用数: 0 h-index: 0机构: North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R China North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R ChinaMei, Shengwei论文数: 0 引用数: 0 h-index: 0机构: Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R ChinaSu, Ying论文数: 0 引用数: 0 h-index: 0机构: North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R ChinaZhen, Zhao论文数: 0 引用数: 0 h-index: 0机构: North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R China Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R ChinaZou, Zubing论文数: 0 引用数: 0 h-index: 0机构: North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R ChinaZhang, Xuemin论文数: 0 引用数: 0 h-index: 0机构: Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R ChinaYin, Rui论文数: 0 引用数: 0 h-index: 0机构: China Three Gorges Corp, Inst Sci & Technol, Beijing 100038, Peoples R China North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R ChinaDui, Neven论文数: 0 引用数: 0 h-index: 0机构: State Grid Hebei Elect Power Co Ltd, Dispatch & Control Ctr, Shijiazhuang 050022, Hebei, Peoples R China Univ Zagreb, Fac Mech Engn & Naval Architecture, Dept Energy Power & Environm Engn, Ivana Lucica 5, HR-10000 Zagreb, Croatia North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R ChinaShafie -khah, Miadreza论文数: 0 引用数: 0 h-index: 0机构: Univ Vaasa, Sch Technol & Innovat, Vaasa 65200, Finland North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R ChinaCatala, P. S.论文数: 0 引用数: 0 h-index: 0机构: Univ Porto, Fac Engn, P-4200465 Porto, Portugal INESC TEC, P-4200465 Porto, Portugal North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R China
- [52] Short-term integrated forecasting method for wind power, solar power, and system load based on variable attention mechanism and multi-task learning[J]. ENERGY, 2024, 304Wang, Han论文数: 0 引用数: 0 h-index: 0机构: North China Elect Power Univ, Sch New Energy, State Key Lab Alternate Elect Power Syst Renewable, Beijing 102206, Peoples R China North China Elect Power Univ, Sch New Energy, State Key Lab Alternate Elect Power Syst Renewable, Beijing 102206, Peoples R ChinaYan, Jie论文数: 0 引用数: 0 h-index: 0机构: North China Elect Power Univ, Sch New Energy, State Key Lab Alternate Elect Power Syst Renewable, Beijing 102206, Peoples R China North China Elect Power Univ, Sch New Energy, State Key Lab Alternate Elect Power Syst Renewable, Beijing 102206, Peoples R ChinaZhang, Jiawei论文数: 0 引用数: 0 h-index: 0机构: North China Elect Power Univ, Sch New Energy, State Key Lab Alternate Elect Power Syst Renewable, Beijing 102206, Peoples R China North China Elect Power Univ, Sch New Energy, State Key Lab Alternate Elect Power Syst Renewable, Beijing 102206, Peoples R ChinaLiu, Shihua论文数: 0 引用数: 0 h-index: 0机构: North China Elect Power Univ, Sch New Energy, State Key Lab Alternate Elect Power Syst Renewable, Beijing 102206, Peoples R China North China Elect Power Univ, Sch New Energy, State Key Lab Alternate Elect Power Syst Renewable, Beijing 102206, Peoples R ChinaLiu, Yongqian论文数: 0 引用数: 0 h-index: 0机构: North China Elect Power Univ, Sch New Energy, State Key Lab Alternate Elect Power Syst Renewable, Beijing 102206, Peoples R China North China Elect Power Univ, Sch New Energy, State Key Lab Alternate Elect Power Syst Renewable, Beijing 102206, Peoples R ChinaHan, Shuang论文数: 0 引用数: 0 h-index: 0机构: North China Elect Power Univ, Sch New Energy, State Key Lab Alternate Elect Power Syst Renewable, Beijing 102206, Peoples R China North China Elect Power Univ, Sch New Energy, State Key Lab Alternate Elect Power Syst Renewable, Beijing 102206, Peoples R ChinaQu, Tonghui论文数: 0 引用数: 0 h-index: 0机构: Powerchina Jilin Elect Power Survey & Design Inst, Changchun 130022, Jilin, Peoples R China North China Elect Power Univ, Sch New Energy, State Key Lab Alternate Elect Power Syst Renewable, Beijing 102206, Peoples R China
- [53] Photovoltaic power forecasting based LSTM-Convolutional Network[J]. ENERGY, 2019, 189Wang, Kejun论文数: 0 引用数: 0 h-index: 0机构: Harbin Engn Univ, Coll Automat, Harbin 150001, Peoples R China Harbin Engn Univ, Coll Automat, Harbin 150001, Peoples R ChinaQi, Xiaoxia论文数: 0 引用数: 0 h-index: 0机构: Harbin Engn Univ, Coll Automat, Harbin 150001, Peoples R China Harbin Engn Univ, Coll Automat, Harbin 150001, Peoples R ChinaLiu, Hongda论文数: 0 引用数: 0 h-index: 0机构: Harbin Engn Univ, Coll Automat, Harbin 150001, Peoples R China Harbin Engn Univ, Coll Automat, Harbin 150001, Peoples R China
- [54] A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network[J]. APPLIED ENERGY, 2019, 251Wang, Kejun论文数: 0 引用数: 0 h-index: 0机构: Harbin Engn Univ, Coll Automat, Harbin 150001, Heilongjiang, Peoples R China Harbin Engn Univ, Coll Automat, Harbin 150001, Heilongjiang, Peoples R ChinaQi, Xiaoxia论文数: 0 引用数: 0 h-index: 0机构: Harbin Engn Univ, Coll Automat, Harbin 150001, Heilongjiang, Peoples R China Harbin Engn Univ, Coll Automat, Harbin 150001, Heilongjiang, Peoples R ChinaLiu, Hongda论文数: 0 引用数: 0 h-index: 0机构: Harbin Engn Univ, Coll Automat, Harbin 150001, Heilongjiang, Peoples R China Harbin Engn Univ, Coll Automat, Harbin 150001, Heilongjiang, Peoples R China
- [55] Comparison of different simplistic prediction models for forecasting PV power output: Assessment with experimental measurements[J]. ENERGY, 2021, 224Wang, Meng论文数: 0 引用数: 0 h-index: 0机构: Changsha Univ Sci & Technol, Sch Energy & Power Engn, Changsha 410114, Hunan, Peoples R China Changsha Univ Sci & Technol, Sch Energy & Power Engn, Changsha 410114, Hunan, Peoples R ChinaPeng, Jinqing论文数: 0 引用数: 0 h-index: 0机构: Hunan Univ, Coll Civil Engn, Changsha 410082, Hunan, Peoples R China Hunan Univ, Key Lab Bldg Safety & Energy Efficiency, Minist Educ, Changsha 410082, Hunan, Peoples R China Changsha Univ Sci & Technol, Sch Energy & Power Engn, Changsha 410114, Hunan, Peoples R ChinaLuo, Yimo论文数: 0 引用数: 0 h-index: 0机构: Hunan Univ, Coll Civil Engn, Changsha 410082, Hunan, Peoples R China Hunan Univ, Key Lab Bldg Safety & Energy Efficiency, Minist Educ, Changsha 410082, Hunan, Peoples R China Changsha Univ Sci & Technol, Sch Energy & Power Engn, Changsha 410114, Hunan, Peoples R ChinaShen, Zhicheng论文数: 0 引用数: 0 h-index: 0机构: Hong Kong Polytech Univ, Renewable Energy Res Grp RERG, Dept Bldg Serv Engn, Kowloon, Hong Kong, Peoples R China Changsha Univ Sci & Technol, Sch Energy & Power Engn, Changsha 410114, Hunan, Peoples R ChinaYang, Hongxing论文数: 0 引用数: 0 h-index: 0机构: Hong Kong Polytech Univ, Renewable Energy Res Grp RERG, Dept Bldg Serv Engn, Kowloon, Hong Kong, Peoples R China Changsha Univ Sci & Technol, Sch Energy & Power Engn, Changsha 410114, Hunan, Peoples R China
- [56] A novel GBDT-BiLSTM hybrid model on improving day-ahead photovoltaic prediction[J]. SCIENTIFIC REPORTS, 2023, 13 (01)Wang, Senyao论文数: 0 引用数: 0 h-index: 0机构: Univ Sydney, Sch Elect & Comp Engn, Sydney, NSW 2008, Australia Univ Sydney, Sch Elect & Comp Engn, Sydney, NSW 2008, AustraliaMa, Jin论文数: 0 引用数: 0 h-index: 0机构: Univ Sydney, Sch Elect & Comp Engn, Sydney, NSW 2008, Australia Univ Sydney, Sch Elect & Comp Engn, Sydney, NSW 2008, Australia
- [57] Ultra-Short-Term Power Prediction of a Photovoltaic Power Station Based on the VMD-CEEMDAN-LSTM Model[J]. FRONTIERS IN ENERGY RESEARCH, 2022, 10Wang, Shuaijie论文数: 0 引用数: 0 h-index: 0机构: Shenyang Inst Engn, Sch Renewable Energy, Shenyang, Peoples R China Shenyang Inst Engn, Sch Renewable Energy, Shenyang, Peoples R ChinaLiu, Shu论文数: 0 引用数: 0 h-index: 0机构: Shenyang Inst Engn, Sch Renewable Energy, Shenyang, Peoples R China Shenyang Inst Engn, Sch Renewable Energy, Shenyang, Peoples R ChinaGuan, Xin论文数: 0 引用数: 0 h-index: 0机构: Shenyang Inst Engn, Sch Renewable Energy, Shenyang, Peoples R China Shenyang Inst Engn, Sch Renewable Energy, Shenyang, Peoples R China
- [58] A novel method based on time series ensemble model for hourly photovoltaic power prediction[J]. ENERGY, 2023, 276Xiao, Zenan论文数: 0 引用数: 0 h-index: 0机构: Yunnan Normal Univ, Sch Phys & Elect Informat, Kunming 650500, Yunnan, Peoples R China Yunnan Normal Univ, Sch Phys & Elect Informat, Kunming 650500, Yunnan, Peoples R ChinaHuang, Xiaoqiao论文数: 0 引用数: 0 h-index: 0机构: Yunnan Normal Univ, Sch Phys & Elect Informat, Kunming 650500, Yunnan, Peoples R China Yunnan Key Lab Opt Elect Informat Technol, Kunming 650500, Yunnan, Peoples R China Yunnan Normal Univ, Sch Phys & Elect Informat, Kunming 650500, Yunnan, Peoples R ChinaLiu, Jun论文数: 0 引用数: 0 h-index: 0机构: Yunnan Normal Univ, Sch Phys & Elect Informat, Kunming 650500, Yunnan, Peoples R China Yunnan Normal Univ, Sch Phys & Elect Informat, Kunming 650500, Yunnan, Peoples R ChinaLi, Chengli论文数: 0 引用数: 0 h-index: 0机构: Yunnan Normal Univ, Sch Phys & Elect Informat, Kunming 650500, Yunnan, Peoples R China Yunnan Key Lab Opt Elect Informat Technol, Kunming 650500, Yunnan, Peoples R China Yunnan Normal Univ, Sch Phys & Elect Informat, Kunming 650500, Yunnan, Peoples R ChinaTai, Yonghang论文数: 0 引用数: 0 h-index: 0机构: Yunnan Normal Univ, Sch Phys & Elect Informat, Kunming 650500, Yunnan, Peoples R China Yunnan Key Lab Opt Elect Informat Technol, Kunming 650500, Yunnan, Peoples R China Yunnan Normal Univ, Sch Phys & Elect Informat, Kunming 650500, Yunnan, Peoples R China
- [59] Short-term PV power forecasting using empirical mode decomposition in integration with back-propagation neural network[J]. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2020, 41 (01) : 25 - 37Yadav, Harendra Kumar论文数: 0 引用数: 0 h-index: 0机构: Natl Inst Technol, Dept Elect Engn, Kurukshetra 136119, Haryana, India Natl Inst Technol, Dept Elect Engn, Kurukshetra 136119, Haryana, IndiaPal, Yash论文数: 0 引用数: 0 h-index: 0机构: Natl Inst Technol, Dept Elect Engn, Kurukshetra 136119, Haryana, India Natl Inst Technol, Dept Elect Engn, Kurukshetra 136119, Haryana, IndiaTripathi, Madan Mohan论文数: 0 引用数: 0 h-index: 0机构: Delhi Technol Univ, Dept Elect Engn, New Delhi 110042, India Natl Inst Technol, Dept Elect Engn, Kurukshetra 136119, Haryana, India
- [60] State-Of-The-Art Solar Energy Forecasting Approaches: Critical Potentials and Challenges[J]. FRONTIERS IN ENERGY RESEARCH, 2022, 10Ye, Haoying论文数: 0 引用数: 0 h-index: 0机构: Kunming Univ Sci & Technol, Fac Elect Power Engn, Kunming, Peoples R China Kunming Univ Sci & Technol, Fac Elect Power Engn, Kunming, Peoples R ChinaYang, Bo论文数: 0 引用数: 0 h-index: 0机构: Kunming Univ Sci & Technol, Fac Elect Power Engn, Kunming, Peoples R China Kunming Univ Sci & Technol, Fac Elect Power Engn, Kunming, Peoples R ChinaHan, Yiming论文数: 0 引用数: 0 h-index: 0机构: Kunming Univ Sci & Technol, Fac Elect Power Engn, Kunming, Peoples R China Kunming Univ Sci & Technol, Fac Elect Power Engn, Kunming, Peoples R ChinaChen, Nuo论文数: 0 引用数: 0 h-index: 0机构: China Southern Power Grid EHV Transmiss Co, Kunming, Peoples R China Kunming Univ Sci & Technol, Fac Elect Power Engn, Kunming, Peoples R China