A Reliable Approach for Lightweight Anomaly Detection in Sensors Using Continuous Wavelet Transform and Vector Clustering

被引:1
作者
Ahmad, Rami [1 ]
Alhasan, Waseem [2 ]
Wazirali, Raniyah [3 ]
Almajalid, Rania [3 ]
机构
[1] Amer Univ Emirates, Coll Comp Informat Technol, Dubai, U Arab Emirates
[2] Berlin Sch Business & Innovation GmbH, D-12043 Berlin, Germany
[3] Saudi Elect Univ, Coll Comp & Informat, Riyadh 11673, Saudi Arabia
关键词
Sensors; Anomaly detection; Continuous wavelet transforms; Feature extraction; Discrete wavelet transforms; Unsupervised learning; Heuristic algorithms; clustering; continuous wavelet transform (CWT); sensors; support vector clustering (SVC); unsupervised learning; WSNs;
D O I
10.1109/JSEN.2024.3407158
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the rapidly evolving field of sensor technology, efficient and accurate anomaly detection is critical across applications from environmental monitoring to cyber-security. Traditional approaches often fail in real-time sensor data scenarios due to high computational requirements and lack of labeled datasets. This article presents a light weight,unsupervised anomaly detection framework that combines continuous wavelet transform (CWT) with support vector clustering (SVC), aiming to reduce computational complexity and dynamically adapt to the data flow. Extensive validation on the Intel Berkeley Research Laboratory (IBRL) dataset demonstrates that our method not only handles sensoraberrations effectively, but also achieves a significant detection accuracy of 93.2% for drift readings, confirming its robustness and efficiency.
引用
收藏
页码:24921 / 24930
页数:10
相关论文
共 25 条
[1]  
Ahmad E. A., 2021, P INT C EL ENG INF I, P1, DOI [10.1109/ICEEI52609.2021.9611120.32, DOI 10.1109/ICEEI52609.2021.9611120.32]
[2]   Optimization Algorithms for Wireless Sensor Networks Node Localization: An Overview [J].
Ahmad, Rami ;
Alhasan, Waseem ;
Wazirali, Raniyah ;
Aleisa, Noura .
IEEE ACCESS, 2024, 12 :50459-50488
[3]   Adaptive Trust-Based Framework for Securing and Reducing Cost in Low-Cost 6LoWPAN Wireless Sensor Networks [J].
Ahmad, Rami ;
Wazirali, Raniyah ;
Abu-Ain, Tarik ;
Almohamad, Tarik Adnan .
APPLIED SCIENCES-BASEL, 2022, 12 (17)
[4]   Machine Learning for Wireless Sensor Networks Security: An Overview of Challenges and Issues [J].
Ahmad, Rami ;
Wazirali, Raniyah ;
Abu-Ain, Tarik .
SENSORS, 2022, 22 (13)
[5]   Adaptive mean center of mass particle swarm optimizer for auto- localization in 3D wireless sensor networks [J].
Alhasan, Waseem ;
Ahmad, Rami ;
Wazirali, Raniyah ;
Aleisa, Noura ;
Shdeed, Weaam Abo .
JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2023, 35 (09)
[6]   USAD : UnSupervised Anomaly Detection on Multivariate Time Series [J].
Audibert, Julien ;
Michiardi, Pietro ;
Guyard, Frederic ;
Marti, Sebastien ;
Zuluaga, Maria A. .
KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, :3395-3404
[7]   Cyber-Physical Anomaly Detection in Microgrids Using Time-Frequency Logic Formalism [J].
Beg, Omar Ali ;
Nguyen, Luan Viet ;
Johnson, Taylor T. ;
Davoudi, Ali .
IEEE ACCESS, 2021, 9 :20012-20021
[8]   Fast Unsupervised Online Drift Detection Using Incremental Kolmogorov-Smirnov Test [J].
dos Reis, Denis ;
Flach, Peter ;
Matwin, Stan ;
Batista, Gustavo .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :1545-1554
[9]   Anomaly detection in ECG using wavelet transformation [J].
Golgowski, Maciej ;
Osowski, Stanislaw .
PROCEEDINGS OF 2020 IEEE 21ST INTERNATIONAL CONFERENCE ON COMPUTATIONAL PROBLEMS OF ELECTRICAL ENGINEERING (CPEE), 2020,
[10]   Aeroengine Control System Sensor Fault Diagnosis Based on CWT and CNN [J].
Gou, Linfeng ;
Li, Huihui ;
Zheng, Hua ;
Li, Huacong ;
Pei, Xiaoning .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020