Hydrogen production in microwave discharge in water with barbotage of methane at atmospheric pressure: Experiment and modeling

被引:1
作者
Batukaev, T. S. [1 ]
Bilera, I. V. [1 ]
Krashevskaya, G. V. [1 ,2 ]
Epstein, I. L. [1 ]
Lebedev, Yu. A. [1 ]
Tatarinov, A. V. [1 ]
Titov, A. Yu. [1 ]
机构
[1] Russian Acad Sci TIPS RAS, AV Topchiev Inst Petrochem Synth, Leninsky Ave 29, Moscow 119991, Russia
[2] Natl Res Nucl Univ MEPhI, Moscow, Russia
关键词
diagnostics; hydrogen production; microwave plasma in water; modeling; steam reforming of methane; PLASMA; ETHANOL; GENERATION; CONVERSION; TORNADO;
D O I
10.1002/ppap.202400139
中图分类号
O59 [应用物理学];
学科分类号
摘要
Gas chromatography was used to study the products of an atmospheric pressure microwave discharge in water with methane bubbling at incident microwave power ranging between 500 and 650 W and methane flow rate ranging between 25 and 75 mL/min. The main components of products are H2, CO, CO2, and CH4. The concentration of H2 reaches 75% with the energy consumption for hydrogen formation of 25 L/kWh. A zero-dimensional self-consistent nonstationary discharge model, which takes into account the process of quenching of reaction products, was developed to analyze experimental results and study mechanisms of the formation of hydrogen and carbon oxides. Taking into account the quenching of reaction products is an important and necessary part of modeling discharges in liquids. Microwave plasma in liquid hydrocarbons is the new area of plasma physics and plasma processing. In this article, we focus on the study of hydrogen production in microwave discharge in water with methane bubbling. This process is similar to so-called methane steam reforming. The process is studied using gas chromatography and optical emission methods and a specially designed zero-dimensional self-consistent model. This model includes the stage of quenching the products of reactions. Mechanisms of main gas products (H2, CO, and CO2) were determined. image
引用
收藏
页数:13
相关论文
共 47 条
[1]   Hydrogen production by methane decomposition: A review [J].
Abbas, Hazzim F. ;
Daud, W. M. A. Wan .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (03) :1160-1190
[2]   The 2022 Plasma Roadmap: low temperature plasma science and technology [J].
Adamovich, I ;
Agarwal, S. ;
Ahedo, E. ;
Alves, L. L. ;
Baalrud, S. ;
Babaeva, N. ;
Bogaerts, A. ;
Bourdon, A. ;
Bruggeman, P. J. ;
Canal, C. ;
Choi, E. H. ;
Coulombe, S. ;
Donko, Z. ;
Graves, D. B. ;
Hamaguchi, S. ;
Hegemann, D. ;
Hori, M. ;
Kim, H-H ;
Kroesen, G. M. W. ;
Kushner, M. J. ;
Laricchiuta, A. ;
Li, X. ;
Magin, T. E. ;
Thagard, S. Mededovic ;
Miller, V ;
Murphy, A. B. ;
Oehrlein, G. S. ;
Puac, N. ;
Sankaran, R. M. ;
Samukawa, S. ;
Shiratani, M. ;
Simek, M. ;
Tarasenko, N. ;
Terashima, K. ;
Thomas, E., Jr. ;
Trieschmann, J. ;
Tsikata, S. ;
Turner, M. M. ;
van der Walt, I. J. ;
van de Sanden, M. C. M. ;
von Woedtke, T. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (37)
[3]  
Arutyunov V. S., 2021, COMBUST PLASMA CHEM, V19, P245, DOI [10.18321/cpc462, DOI 10.18321/CPC462]
[4]   Production of Hydrogen-Rich Synthesis Gas by Pulsed Atmospheric Plasma Submerged in Mixture of Water with Ethanol [J].
Bardos, L. ;
Barankova, H. ;
Bardos, A. .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2017, 37 (01) :115-123
[5]   Physical and Chemical Phenomena during the Production of Hydrogen in the Microwave Discharge Generated in Liquid Hydrocarbons with the Barbotage of Various Gases [J].
Batukaev, Timur S. ;
Bilera, Igor V. ;
Krashevskaya, Galina V. ;
Lebedev, Yuri A. .
PROCESSES, 2023, 11 (08)
[6]   Hydrogen production in microwave discharge in water solutions of ethanol at atmospheric pressure [J].
Batukaev, Timur S. ;
Bilera, Igor V. ;
Krashevskaya, Galina V. ;
Lebedev, Yuri A. ;
Epstein, Iren L. .
PLASMA PROCESSES AND POLYMERS, 2023, 20 (06)
[7]  
berkeley.edu, GRI MECH 30
[8]   Steam reforming of ethanol into hydrogen-rich gas using microwave Ar/water "tornado" - Type plasma [J].
Bundaleska, N. ;
Tsyganov, D. ;
Tatarova, E. ;
Dias, F. M. ;
Ferreira, C. M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (11) :5663-5670
[9]   Hydrogen production from methanol reforming in microwave "tornado"-type plasma [J].
Bundaleska, N. ;
Tsyganov, D. ;
Saavedra, R. ;
Tatarova, E. ;
Dias, F. M. ;
Ferreira, C. M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (22) :9145-9157
[10]   Hydrogen Generation by Pulsed Gliding Arc Discharge Plasma with Sprays of Alcohol Solutions [J].
Burlica, Radu ;
Shih, Kai-Yuan ;
Hnatiuc, Bogdan ;
Locke, Bruce R. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (15) :9466-9470